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Abstract

Building intelligent agents capable of understanding natural language instruc-

tions and performing various real-world tasks has been a longstanding goal of

artificial intelligence. Advances in machine learning and natural language pro-

cessing have significantly enhanced these agents’ capabilities, enabling them to

use language as a vehicle for communication, reasoning, and learning. Agents

with such capabilities are often referred to as language agents. This dissertation

explores embodied language agents that interpret human instructions and exe-

cute robotic tasks in a physical environment. Based on my previous works [Kang

et al., 2023, 2024a,b], three challenges for embodied language agents are dis-

cussed, each building upon a core capability of language agents: 1) visually-

grounded communication, 2) reasoning about underspecified instructions, and

3) learning robotic skills from natural language.

Visually-grounded communication is a core capability of embodied language

agents, as it enables agents to effectively communicate with humans about their

visual perceptions. We explore how embodied language agents can enhance their

robustness and generalization capability for visually-grounded communication.

To this end, we introduce a semi-supervised learning approach called generative

self-training (GST). A key idea of GST is to generate artificial visual dialog data

based on huge amounts of unlabeled images on the Web and use it for training.

GST demonstrates significant performance improvements in both adversarial

robustness and generalization to unseen data.

Natural language is inherently ambiguous and context-dependent. Thus,

we discuss how embodied language agents can reason about underspecified in-
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structions like “My device runs out of battery” and grasp desired objects (e.g.,

charger) through human-robot interaction. Specifically, our proposed system

generates questions for humans to disambiguate the target object in the scene

and keeps updating its belief for each object candidate based on human answers.

We call the process of evaluating how well each object candidate explains the

current visual and dialogue context as pragmatic inference. Experimental re-

sults show that pragmatic inference improves the target object discovery and

the task success rate of object grasping when given underspecified instruction.

The third topic discusses how language can be used as an interface for robot

learning. The goal is to train language-conditioned robotic policies only through

language supervision. We first present a language-based teleoperation system

for robot data collection. Then, we introduce a vision-language-action (VLA)

model that learns language-conditioned policies directly from the language su-

pervision, which we call CLIP-RT (CLIP-based Robotics Transformer). Inspired

by CLIP which uses natural language as a training signal, CLIP-RT extends

this idea to robot learning. Specifically, CLIP-RT treats language supervision

from humans (e.g.,‘move the arm forward.”) as supervision for robotic poli-

cies and learns to optimize the similarity between the language supervision and

the robot’s current state through contrastive learning. CLIP-RT demonstrates

strong capabilities in learning novel robotic skills, outperforming the prior art.

Keywords: Deep learning, robot learning, human-robot interaction, visually-

grounded dialog, pragmatic inference, language-conditioned policy learning

Student Number: 2020-36496
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Chapter 1

Introduction

1.1 Intelligent Agents: A Conceptual Framework

The concept of an intelligent agent was introduced in the early stage of artificial

intelligence (AI). Russell and Norvig [2016] have established the conceptual

framework of intelligent agents, as shown in Figure 1.1. They defined the agent

as an entity that can perceive its environment through sensors and take actions

in that environment through actuators. The agent function internally maps any

perceptual input sequence to an action to maximize the expected performance

measure (e.g., task success). While contemporary AI agents largely follow this

framework, advances in AI have expanded the boundaries of this classic concept.

What has changed in the era of deep learning [LeCun et al., 2015]?

1.2 Language Agents

One of the most representative changes is arguably the capabilities of under-

standing and generating natural language. As large-scale text data [Conneau

1



Figure 1.1: A conceptual framework of the agent from Russell and Norvig [2016].

et al., 2017] and advanced AI algorithms [Vaswani et al., 2017] become available,

AI agents have significantly improved their ability to use language. Modern AI

agents use language as a vehicle for communication, reasoning, and learning.

They are referred to as language agents [Su, 2023, Ouyang et al., 2022].

Contemporary language agents like GPT-4 [OpenAI, 2023a], Gemini [Gem-

ini et al., 2023], and HyperCLOVA X [Yoo et al., 2024] can communicate with

humans on a wide range of topics through natural language. These capabilities

significantly expand the breadth and depth of tasks that AI agents can perform,

improving their adaptability to dynamic and complex environments. Addition-

ally, using language for communication makes these agents more accessible to

a broader range of users, including non-experts.

Language agents also use language to perform complex reasoning, such as

arithmetic reasoning [Wei et al., 2022] and robot planning [Zeng et al., 2022].

The agents typically decompose complex reasoning problems into intermediate

ones and explicitly represent their step-by-step reasoning results in language.

All intermediate results specified in natural language are used to predict the

final solutions. As a result, these capabilities lead to more accurate and justified

2



predictions compared with direct answering.

Another capability of language agents is learning from language supervision

or feedback. Motivated by how humans learn from and teach each other, several

studies [Radford et al., 2021, Cheng et al., 2023, Liu et al., 2023, Han et al., 2024]

explore this capability by directly training AI agents with natural language.

Compared with prevalent approaches that learn from numeric class labels or

rewards [Ouyang et al., 2022], learning from language offers several benefits.

First, language supervision contains rich signals about agent behaviors, helping

agents avoid excessive trial and error [Cheng et al., 2023]. Second, it eliminates

the need for designing a reward function, which requires careful consideration

and is often time-consuming.

1.3 Embodied Language Agents

This dissertation focuses on embodied language agents — language agents that

perform real-world robotic tasks using language. We describe the specific chal-

lenges for embodied language agents, which build upon the three capabilities of

language agents: communication, reasoning, and learning. We further outline

our approach to addressing each challenge.

The first challenge is visually-grounded communication. Since vision is a

major modality of robot perception, the capability to continuously communi-

cate with humans about visual inputs is an essential component for embodied

language agents. We address this challenge on the visual dialog task [Das et al.,

2017] where AI agents should answer a sequence of questions grounded in an

image using dialog history as context. For example, the agent is expected to

answer open-ended questions, such as “Is she wearing glasses?”

We introduce how embodied language agents can improve their robustness
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and generalization capability for visually-grounded communication. One simple

way to achieve this is to train the agents on diverse visual dialog data. To this

end, we introduce a semi-supervised learning method for visually-grounded di-

alogue called generative self-training (GST). GST first trains models for answer

generation (teacher) and question generation (questioner) using small amounts

of human-labeled data. Next, the teacher and questioner alternatively generate

the visual question and corresponding answer for large-scale unlabeled images

on the Web via multimodal conditional text generation. Finally, GST trains an-

other answer generation model, which we call the student, on the combination

of human-labeled and machine-labeled visual dialog data.

The second challenge is reasoning about underspecified instructions. Hu-

mans often provide ambiguous or underspecified instructions. Thus, reasoning

about instructions based on contextual information is an important challenge.

Inspired by pragmatics [Goodman and Frank, 2016, Fried et al., 2022], where

humans often convey their intended meanings by relying on context, we design a

new task scenario to address this challenge, which we call pragmatic interactive

object grasping (Pragmatic-IOG). In this task, a human first provides intention-

oriented instruction like “I am thirsty.” There is more than one object in the

scene that meets the instructions. Embodied language agents should find all

valid object candidates and ask questions for disambiguation. After interacting

with human users, the agents should infer and grasp the target object.

We propose a modular approach for Pragmatic-IOG called pragmatic ob-

ject grasping (PROGrasp). PROGrasp consists of four components: 1) visual

grounding to identify object candidates, 2) question generation for instruction

disambiguation, 3) answer interpretation to reason about the target object, and

4) object grasping to retrieve the target object. Furthermore, we present a rea-

soning method for target object discovery, which we call pragmatic inference.
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This method measures how well each object candidate explains the observed

data, including the visual scene and dialogue history. We use the modules for

visual grounding and answer interpretation to implement pragmatic inference.

The third challenge is learning robotic skills from natural language. Learning

robotic actions from natural language has significant potential, as it enables

non-experts to intuitively train robots in their environments. To this end, we

study how embodied language agents learn robotic skills (e.g., open the cabinet)

only from language guidance (e.g., “move the arm to the left”).

We first propose a language-based teleoperation method to collect robot

demonstration data. Specifically, a human first provides natural language su-

pervision at each time step, and large language models (LLMs) [OpenAI, 2023a,

Gemini et al., 2023, Yoo et al., 2024] then translate language supervision into

low-level robotic action based on the detailed text prompt. Robots finally move

based on the action. After repeating this process, demonstration data is col-

lected. To scale up the size of the collected demonstrations, we further propose

a data augmentation method. It aims to collect alternative trajectory data for

the original demonstration trajectories based on the heuristic algorithm.

We introduce a model that learns robotic policies directly from natural lan-

guage supervision, which we call CLIP-RT (CLIP-based Robotics Transformer).

Inspired by CLIP [Radford et al., 2021] that uses language as a training sig-

nal, we extend CLIP to robot learning. Specifically, we employ the pre-trained

CLIP models and train them to optimize the pairwise similarity between natu-

ral language supervision (e.g., “move the arm forward”) and the robot’s current

state (i.e., the observed visual scene and language instruction). In other words,

CLIP-RT learns to predict actions specified in language, rather than directly

predicting low-level robotic actions. At test time, CLIP-RT uses the pre-defined

lookup table that maps the language action into a low-level robotic action.
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1.4 Organization of the Dissertation

The remaining part of the dissertation is organized as follows.

Chapter 2 surveys related work at the intersection of natural language pro-

cessing (NLP) and robotics, categorized into (1) communication, (2) reasoning

and planning, and (3) learning and control.

Chapter 3 discusses visually-grounded communication. First, we describe

the problem of visual dialog and the motivation of our proposed method. Then,

we present the related work, including self-training and existing studies in vi-

sual dialog. Next, we introduce our proposed method, generative self-training

(GST) for visually-grounded dialogue. Finally, we describe the experimental

setup and results, including a comparison with state-of-the-art, adversarial ro-

bustness analysis, and qualitative analysis.

Chapter 4 discusses reasoning about underspecified instruction. We first

illustrate the problem of interactive object grasping along with the motiva-

tion. We then describe our proposed task, Pragmatic-IOG. Next, we provide

the related works consisting of language-guided object grasping and pragmat-

ics. We delve into our proposed method, PROGrasp, with five components:

visual grounding, question generation, answer interpretation, object grasping,

and pragmatic inference. In experiments, we describe test data, evaluation pro-

tocols, and results. Finally, we discuss the quantitative and qualitative results.

Chapter 5 discusses learning robotic skills from natural language. We first

introduce our motivation and an overview of our approach. Then, we provide

related works regarding robot data collection and vision-language-action (VLA)

models. Next, we elaborate on our proposed model, CLIP-RT, and the language-

based teleoperation method. In experiments, we describe the experimental setup

consisting of robotic tasks, data, compared methods, and a robotic platform.
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We finally discuss the experimental results.

Chapter 6 concludes the dissertation by summarizing its content and high-

lighting the contributions. Finally, we present promising future directions: (1)

lifelong learning and (2) long-horizon task execution.
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Chapter 2

Background: Robots That Use
Language

2.1 Introduction

Building robots that understand and use natural language has a long history,

driven by the need for intuitive human-robot interaction. Early systems, such as

Shakey the Robot [Nilsson et al., 1984], relied on rigid, predefined commands,

offering basic language understanding. Advancements enabled service robots to

process spoken instructions [Lopes and Teixeira, 2000, Dzifcak et al., 2009, Artzi

and Zettlemoyer, 2013] like “Bring me a cup of coffee.” However, these systems

heavily relied on predefined grammar [Steedman, 1996] and lexical analysis

to interpret instructions, making them unable to handle novel or ambiguous

commands. Despite their limitations, these early efforts laid the groundwork for

systems capable of handling more complex language and interacting in more

dynamic environments.

Transformative advancements in both natural language processing (NLP)
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and robotics have emerged, fueled by breakthroughs in machine learning. Deep

learning [LeCun et al., 2015], particularly the rise of sequence-to-sequence mod-

els [Sutskever et al., 2014] and later transformer-based architectures [Vaswani

et al., 2017], enabled robots to handle more nuanced linguistic inputs and re-

spond more adaptively to context. Equipped with such capabilities, robots could

not only follow commands but also engage in simple dialogues to clarify instruc-

tions [Thomason et al., 2019, Tellex et al., 2020]. Applications have expanded

from structured environments to more dynamic, real-world scenarios, such as

household assistants [Shridhar et al., 2020, Anderson et al., 2021].

More recently, the emergence of large language models (LLMs) [Brown et al.,

2020, OpenAI, 2023a, Gemini et al., 2023, Yoo et al., 2024] has revolutionized

the intersection of NLP and robotics. These models, trained on Internet-scale

text corpora [wik, 2019, Conneau et al., 2017], allow robots to understand and

generate language with advanced reasoning capabilities. These advancements

drastically expand the scope of language-capable robots across three key areas:

(1) communication, (2) reasoning and planning, and (3) learning and control.

In the following section, we will discuss each area in detail.

2.2 Communication

Communicating with humans and other robots using natural language is one

of the key capabilities for intelligent robots. This capability can be broadly

categorized into single-turn and multi-turn interactions.

In single-turn communication, the robot processes a single instruction and

performs the corresponding action without the need for follow-up clarification.

For example, when given the command “Pick up the cup,” the robot identi-

fies and performs the action. Early systems like SHRDLU [Winograd, 1972]

9



were based on predefined commands and simple logic. However, modern sys-

tems, particularly those utilizing deep learning models [LeCun et al., 2015],

have significantly enhanced the robot’s ability to interpret and execute natural

language commands in more dynamic environments. For example, in the field

of robotic manipulation, extensive research has developed object-grasping sys-

tems that follow natural language instructions [Paul et al., 2017, Shridhar and

Hsu, 2017, Venkatesh et al., 2021, Nguyen et al., 2020a, Kim et al., 2023]. Sim-

ilarly, in robotic navigation, vision-and-language navigation (VLN) [Anderson

et al., 2018b, Fried et al., 2018, Ku et al., 2020] has become a popular research

area. These systems rely on language inputs to guide robots in complex en-

vironments. All of these studies assume that an initial, isolated instruction is

enough to perform such tasks effectively.

Multi-turn communication, on the other hand, involves an ongoing dialogue

where the robot seeks clarification or elaborates on tasks to refine its under-

standing. For instance, when asked to “Pick up the cup,” a multi-turn system

might ask, “Do you mean the blue cup on the table?” This iterative process

allows the robot to resolve uncertainties and ensure task alignment, which is

crucial for tasks that are more complex or require contextual understanding.

Recent work in object grasping has explored interactive systems where robots

ask for more information to disambiguate target objects [Shridhar and Hsu,

2018, Hatori et al., 2018, Zhang et al., 2021, Yang et al., 2022, Mo et al., 2022].

In navigation, cooperative vision-and-dialog navigation (CVDN) [Thomason

et al., 2020] assumes a scenario where navigation agents receive an underspeci-

fied or ambiguous command in indoor environments, such as “Go to the room

with the bed.” After a few question-answer exchanges, the agents are expected

to navigate the space based on the dialog history. These studies showcase the

increasing importance of dialogue and context for robots to perform tasks ac-
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curately and efficiently.

2.3 Reasoning and Planning

Reasoning and planning are crucial capabilities, enabling robots to tackle com-

plex tasks through informed decision-making. Reasoning encompasses diverse

cognitive capabilities, including commonsense reasoning [Chen et al., 2020b],

spatio-temporal reasoning [Huang et al., 2024], and pragmatic reasoning [Kang

et al., 2024a]. Recent advancements in reasoning have been largely influenced by

the capabilities of large language models (LLMs) [Brown et al., 2020, OpenAI,

2023a, Gemini et al., 2023, Yoo et al., 2024] and advanced reasoning algo-

rithms [Wei et al., 2022, Yao et al., 2024]. One significant change in LLM-based

reasoning is using language as a vehicle for thought [Yu et al., 2023]. For exam-

ple, Socratic Models [Zeng et al., 2022] compose multiple pre-trained models

(e.g., LLMs, Vision-Language Models, and Audio-Language Models) and make

them exchange information with each other for multimodal reasoning. The pre-

trained models directly use natural language as the intermediate representation

by which the modules exchange information with each other.

Large language models (LLMs) have demonstrated their excellence in task

planning. Typically, LLMs take high-level instructions (e.g., “Move the blocks

on the empty bowl”) as inputs and translate them into a sequence of action

primitives [Huang et al., 2022a] or Python codes that result in actions [Liang

et al., 2023]. Other methods adjust plans based on observations [Ahn et al.,

2022, Wu et al., 2023, Song et al., 2023] or execution failures [Huang et al.,

2022b, Shin et al., 2024]. Such adaptive planning improves flexibility and ro-

bustness in task execution, enabling robots to better respond to changing condi-

tions and unexpected scenarios. Furthermore, some studies have explored LLMs
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as task and motion planners, making them generate low-level robotic trajecto-

ries [Kwon et al., 2023, Mandi et al., 2024].

2.4 Learning and Control

Significant efforts have been devoted to developing robotic systems that learn to

execute natural language instructions. In the context of robotic manipulation,

some studies have trained language-conditioned visuomotor policies through of-

fline reinforcement learning algorithms [Kostrikov et al., 2021, Meng et al., 2023]

or imitation learning [Stepputtis et al., 2020, Lynch and Sermanet, 2020, Shrid-

har et al., 2022, Mees et al., 2022]. The advent of large-scale robot data [Jang

et al., 2022, Padalkar et al., 2023] has accelerated progress in imitation learning-

based methods. More recently, a line of research directly trains pre-trained

vision-language models (VLMs) to predict robotic actions, often referred to as

vision-language-action (VLA) models. By leveraging rich semantic knowledge

of VLMs, VLA models demonstrate more generalizable and effective language-

conditioned policies [Brohan et al., 2022, 2023, Kim et al., 2024, Belkhale et al.,

2024, Kang et al., 2024b] across diverse robotic tasks.

In the context of robot navigation, researchers have studied embodied in-

struction following agents in the context of vision-and-language navigation

(VLN) [Anderson et al., 2018b, Ku et al., 2020, Thomason et al., 2020]. VLN

agents should navigate 3D indoor environments by following natural language

instructions. They were mostly developed in simulation environments [Chang

et al., 2017], but some works have attempted to transfer them to real-world

environments [Anderson et al., 2021, Krantz and Lee, 2022] or continuous 3D

environments [Krantz et al., 2020, 2021].
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2.5 Conclusion

We have categorized the existing literature on language-capable robots into

three areas: (1) communication, (2) reasoning and planning, and (3) learning

and control. This survey highlights the advancements and challenges within

these three areas, providing a comprehensive overview of the current state of

research on language-capable robots. In the following chapters, we will discuss

how embodied language agents can bridge the gap between each area.
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Chapter 3

Visually-Grounded
Communication

3.1 Introduction

Extensive studies have focused on developing interactive agents that can “see”

and “communicate” [Das et al., 2017, De Vries et al., 2017, Kim et al., 2019]

due to their popularity in many real-world applications (e.g., interacting with

humanoid robots or assisting visually impaired person). Notably, Visual Dialog

(VisDial) [Das et al., 2017] serves as a testbed for developing these capabilities,

requiring a dialog agent to answer a sequence of visually-grounded questions.

For example, the agent should answer open-ended questions like “Is she wearing

glasses?” and “What color is it?”. The VisDial requires a deep understanding

of visual perception and linguistic semantics, with a primary focus on effectively

grounding the two.

Prior works in the VisDial have trained the dialog agents solely on the

VisDial data via supervised learning [Lu et al., 2017, Seo et al., 2017, Kottur
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et al., 2018, Niu et al., 2019, Schwartz et al., 2019, Guo et al., 2019, Gan et al.,

2019, Kang et al., 2019, Nguyen et al., 2020b, Kang et al., 2021] or employed

self-supervised pre-training [Murahari et al., 2020, Wang et al., 2020b, Chen

et al., 2022] before training with the VisDial data. In other words, all exist-

ing studies rely on the VisDial data collected by humans and have no control

over this supervision. We thus ask: How can the agent improve its robustness

and generalization capabilities beyond what it learns from the static, human-

labeled visual dialog data? Prior works have demonstrated that semi-supervised

learning improves generalization in both image [Zoph et al., 2020] and text clas-

sification [Du et al., 2021]. Accordingly, we consider semi-supervised learning

(SSL) as an approach to addressing our research question.

Let us assume that we obtain huge amounts of unlabeled images. SSL for the

VisDial can be applied to generate synthetic dialogue data for the unlabeled

images and train the agent with the synthetic data. However, there are two

critical problems with this approach. First, the target output for the VisDial

(i.e., multi-turn visual QA data) is complex compared with the classification

tasks [Zoph et al., 2020, Du et al., 2021]. Second, even if SSL results in synthetic

dialog data via text generation, the synthetic data may be noisy, containing

irrelevant questions or incorrect answers. A robust training method is required

to leverage such noisy synthetic dialog datasets.

Inspired by self-training [Zoph et al., 2020, Du et al., 2021, Lee et al., 2013,

Berthelot et al., 2019, Sohn et al., 2020, Xie et al., 2020a,b, He et al., 2020] that

have mainly been studied in classification tasks [Xie et al., 2020b, Zoph et al.,

2020, Sohn et al., 2020, Du et al., 2021], we extend the idea of self-training to

the task of visually-grounded dialogue. To this end, we propose a new learning

strategy, which we call generative self-training (GST) that aims to generate the

synthetic visual dialog data and utilizes the data for training. GST first trains
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the teacher model (answerer) and the visual question generation model (ques-

tioner) using human-labeled VisDial data. It then retrieves unlabeled images

from a Web image dataset, Conceptual 12M [Changpinyo et al., 2021]. Next,

the questioner and the teacher alternatively generate a sequence of visual QA

pairs for unlabeled images. Finally, the student learns the synthetic and the

original VisDial data. We also introduce two methods: perplexity-based data

selection (PPL) and multimodal consistency regularization (MCR) to effectively

learn the noisy dialogue data. As a result, GST effortlessly scales up the size of

training data (1.2M QA pairs → 12.9M QA pairs).

Our key contributions are four-fold. First, we propose a semi-supervised

learning method called generative self-training (GST) to advance the general

understanding of visually-grounded dialogue. Second, experiments show that

GST achieves new state-of-the-art performance on the VisDial v1.0 and v0.9

datasets at the time of publication. Third, we conduct an adversarial robustness

analysis to identify the robustness of GST. We observe that GST significantly

improves the robustness compared with the baseline models against all types

of visual and textual adversarial attacks, boosting performance. Finally, we

perform a qualitative analysis by visualizing the synthetic data and answer

predictions from different models.

3.2 Related Work

3.2.1 Visual Question Answering

Visual Question Answering (VQA) [Antol et al., 2015, Goyal et al., 2017] is a

pivotal task at the intersection of computer vision and natural language process-

ing. This task requires a holistic understanding of an input image and natural

language question grounded to the image. Extensive studies have focused on
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learning effective joint representations of images and questions [Yang et al.,

2016, Kim et al., 2016, 2017, Anderson et al., 2018a, Yu et al., 2018, Kim

et al., 2018, 2020]. However, these methods inherently involve a single round

of interaction, treating each question as an independent query. This limitation

highlights the need for models capable of handling multi-turn interactions while

maintaining context.

3.2.2 Visual Dialog

Visual Dialog (VisDial) [Das et al., 2017] requires a dialog agent to answer

a sequence of image-grounded questions using the dialog history. Prior works

have explored diverse attention mechanisms [Lu et al., 2017, Seo et al., 2017,

Kottur et al., 2018, Niu et al., 2019, Schwartz et al., 2019, Guo et al., 2019, Gan

et al., 2019, Kang et al., 2019, Nguyen et al., 2020b] considering the ground-

ing of the image, dialog history, and question. A line of research [Zheng et al.,

2019, Kang et al., 2021] explicitly builds the semantic structures of the dia-

log inspired by graph neural networks [Scarselli et al., 2008]. More recently, a

line of research [Murahari et al., 2020, Wang et al., 2020b, Chen et al., 2022]

has employed self-supervised pre-training to leverage the knowledge of related

vision-and-language datasets [Sharma et al., 2018, Antol et al., 2015, Zhu et al.,

2015]. All of them have relied on human-labeled VisDial data. However, our ap-

proach is based on semi-supervised learning and actively generates the synthetic

visual dialog data for training.

3.2.3 Neural Dialog Generation

Neural dialogue generation is a vibrant research area in natural language pro-

cessing [Zhang et al., 2020, Shang et al., 2015, Li et al., 2016, Serban et al.,

2017, Saleh et al., 2020, Li et al., 2017a, Wang et al., 2020a, Huang et al., 2020].
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Our approach is similar to neural dialogue generation in that the model should

generate a corresponding response based on the dialog history and the current

utterance. However, we aim to generate visually-grounded dialogue and thus

focus on the image-groundedness of visual questions and the semantic correct-

ness of corresponding answers. On the other hand, neural dialogue generation

considers diverse aspects when evaluating the systems: specificity, response-

relatedness [See et al., 2019], interestingness [Mehri and Eskenazi, 2020], and

diversity [Li et al., 2016].

3.3 Approach

3.3.1 Preliminaries

Visual Dialog. The visual dialog (VisDial) data [Das et al., 2017] contains an

image v and a corresponding dialog d = { c︸︷︷︸
d0

, (q1, a1)︸ ︷︷ ︸
d1

, · · · , (qT , aT )︸ ︷︷ ︸
dT

} where c is

an image caption. T is the number of rounds for each dialog. At each round t, a

dialog agent takes a triplet (v, d<t, qt) as an input, consisting of the image, the

dialog history, and a visual question. d<t denotes all dialog rounds before the t-

th round. The agent is then expected to predict a ground-truth answer at. There

are two broad classes of methods in the VisDial: generative and discriminative.

Generative models aim to generate the ground-truth answer by maximizing

the log-likelihood of at. In contrast, discriminative models learn to retrieve the

ground-truth answer from a set of answer candidates at ∈
{
a1t , · · · , a100t

}
. Our

focus is generative models since they do not need pre-defined answer candidates

and are thus more practical for real-world applications.

Self-Training. There exists a labeled dataset L = {(xn, yn)}Nn=1 and an un-

labeled dataset U = {x̃m}Mm=1. Typically, self-training trains a teacher model
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Figure 3.1: An overview of generative self-training (GST).

PT on the labeled dataset L. The teacher then predicts the pseudo label ỹ for

the unlabeled data x̃, constructing the synthetic dataset L̃ = {(x̃m, ỹm)}Mm=1.

Finally, a student model PS is trained on the combination of the original and

synthetic datasets L ∪ L̃. Many variants have been studied on this setup: (1)

selecting the subset of the synthetic dataset [He et al., 2020, Xie et al., 2020b,

Sohn et al., 2020], (2) adding noise to inputs [Zoph et al., 2020, He et al., 2020,

Xie et al., 2020b,a, Sohn et al., 2020], and (3) iterating the above setup multiple

times [He et al., 2020, Xie et al., 2020b].

3.3.2 Generative Self-Training (GST)

Figure 3.1 illustrates an overview of GST. There is a human-labeled VisDial

data L = {(vn, dn)}Nn=1 where vn is a given image, and each dialog dn =

{ cn︸︷︷︸
dn,0

, (qn,1, an,1)︸ ︷︷ ︸
dn,1

, · · · , (qn,T , an,T )︸ ︷︷ ︸
dn,T

} consists of an image caption c and T rounds

of QA pairs. GST first trains a teacher PT and a questioner PQ with the la-

beled dataset L via supervised learning. It then retrieves unlabeled images

U = {ṽm}Mm=1 from the Conceptual 12M dataset [Changpinyo et al., 2021] us-

ing a simple outlier detection model, the multivariate normal distribution. Next,
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the questioner and the teacher generate the visually-grounded dialog d̃ for the

unlabeled image ṽ via multimodal conditional text generation, finally yielding a

synthetic dialog dataset L̃ = {(ṽm, d̃m)}Mm=1. We call this dataset the silver Vis-

Dial data to distinguish it from the human-labeled VisDial dataset [Das et al.,

2017] (short for the gold VisDial data). Finally, a student PS is trained on a

combination of the gold and the silver VisDial data while applying perplexity-

based data selection (PPL) and multimodal consistency regularization (MCR)

to the silver VisDial data.

Teacher and Questioner Training. GST first trains the answer generator —

the teacher model PT on the gold VisDial data. Specifically, the teacher learns

to generate the ground-truth answer at = (wt,1, · · · , wt,S), given the context

ct ≜ (v, d<t, qt) comprising the image, the dialog history, and the question. We

minimize the negative log-likelihood of the ground-truth answer:

LT = − 1

NT

N∑
n=1

T∑
t=1

logPT (an,t|cn,t)

= − 1

NTS

N∑
n=1

T∑
t=1

S∑
s=1

logPT (ws|cn,t, w<s)

(3.1)

where N , T , and S indicate the number of data tuples in gold VisDial data, di-

alog rounds, and the sequence length of the ground-truth answer, respectively.

w<s denotes all word tokens before the s-th token in the answer sequence. Sim-

ilar to the teacher, the questioner is trained to generate the question at round

t, given the image and the dialog history until round t− 1 (i.e., PQ(qt|v, d<t)).

The questioner also learns to minimize the negative log-likelihood of the ques-

tion. Note that the teacher and the questioner are trained separately to prevent

possible unintended co-adaptation [Kim et al., 2019]. Both the teacher and

the questioner are based on encoder-decoder architecture, where an encoder
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aggregates the context, and a decoder generates the target sequence. We im-

plement the models by integrating a pre-trained vision-and-language encoder,

ViLBERT [Lu et al., 2019], with the transformer decoder [Rothe et al., 2020].

Unlabeled In-Domain Image Retrieval (IIR). Inspired by the work [Du

et al., 2021], GST retrieves in-domain image data from the unlabeled image

dataset [Changpinyo et al., 2021] using an out-of-distribution (OOD) detection

model. Specifically, we extract the D dimensional feature vector for each image

in the gold VisDial dataset by using the Vision Transformer (ViT) [Dosovit-

skiy et al., 2021] in the CLIP model [Radford et al., 2021], yielding a feature

matrix for the entire images X = (X1, · · · , XN )⊤ ∈ RN×D. Based on the ma-

trix, we build the multivariate normal distribution whose dimension is D, i.e.,

X ∼ ND(µ,Σ). We regard this normal distribution as the empirical distribution

of the gold VisDial images and perform OOD detection by identifying the prob-

ability of each feature vector for the unlabeled image. Consequently, the top-M

unlabeled images are retrieved out of 12 million images (M ≈ 3.6 million).

Visually-Grounded Dialog Generation. Regarding the retrieved images

U = {ṽm}Mm=1, the goal of this step is to generate the visually-grounded dialogs

{d̃m}Mm=1 where each dialog d̃ consists of the image caption and T rounds of QA

pairs. In an actual implementation, we use the image captions in the Conceptual

12M dataset [Changpinyo et al., 2021] and thus do not generate the captions.

The QA pairs are sequentially generated. The questioner generates the question

q̃t, given the image ṽ, the caption c̃, and the generated QA pairs until round t−1.

Next, the teacher produces the corresponding answer ãt based on the image ṽ,

the dialog history d̃<t, and the generated question q̃t. As a consequence, GST

yields the silver VisDial dataset L̃ = {(ṽm, d̃m)}Mm=1.
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Student Training. The student PS is trained on the combination of the silver

and the gold VisDial data. According to prior works in self-training [Xie et al.,

2020b, He et al., 2020, Sohn et al., 2020, Zoph et al., 2020], selectively utilizing

the samples in the synthetic dataset is a common approach since the confidence

of the teacher model’s predictions varies depending on the sample. To this end,

we introduce a simple yet effective data selection method for sequence gen-

eration, perplexity-based data selection (PPL). PPL utilizes the answer data

whose perplexity of the teacher is below a certain threshold. Perplexity is the

exponentiated average negative log-likelihood of a sequence; the lower, the bet-

ter. We hypothesize that PPL, albeit noisy, can be an indicator of whether the

generated answer is correct or not, as in [Shakeri et al., 2020]. Furthermore,

inspired by the consistency regularization [Xie et al., 2020a, Sohn et al., 2020],

we also propose the multimodal consistency regularization (MCR) to improve

the generalization capability of the student. MCR encourages the student to

yield predictions similar to the teacher’s predictions even when the student is

provided with perturbed multimodal inputs. A loss function for the student is:

LS =− 1

MT

M∑
m=1

T∑
t=1

1(PPL(ãm,t) < τ)logPS(ãm,t|M(c̃m,t))︸ ︷︷ ︸
MCR

− 1

NT

N∑
n=1

T∑
t=1

logPS(an,t|cn,t)

where PPL(ãt) = exp

{
− 1

S

S∑
s=1

logPT (w̃s|c̃t, w̃<s)

}
(3.2)

where M , 1, and τ denote the number of data tuples in silver VisDial data, in-

dicator function, and selection threshold, respectively. c̃m,t ≜ (ṽm, d̃m,<t, q̃m,t) is

the context for the silver VisDial data. The loss function consists of the losses

for the silver and the gold VisDial data. PPL and MCR are applied to the

loss of the silver VisDial data. PPL is implemented by the indicator function
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above, selecting the synthetic answers whose perplexity of the teacher is below

the threshold τ . It implies that unselected answers are ignored during training.

The teacher’s perplexity of each answer is computed in the dialog generation

step. Next, M denotes the stochastic function for MCR that injects perturba-

tions to the input space of the student. We implement the stochastic function

by randomly masking 15% of image regions and word tokens [Lu et al., 2019].

Masked image regions have their image features zeroed out, and the masked

word tokens are replaced with a special [MASK] token. MCR induces minimizing

the distance between the perturbed (i.e., masked) predictions from the student

and the unperturbed predictions (i.e., ãm,t) from the teacher. We believe MCR

makes the student robust to the input noise, and PPL encourages the student

to maintain a low entropy (i.e., confident) in noisy data training. The student

and the teacher share the same model architecture.

Iterative Training. We employ the concept of iterative training [Xie et al.,

2020b, He et al., 2020], which repeats GST several times. The iterative training

treats the student model at i-th iteration as a teacher model at (i+1)-th itera-

tion and generates new synthetic data to train a new student. In other words,

the iterative training repeats the third and fourth steps in Figure 3.1, where

the silver data accumulates as the iteration proceeds. The student model at

each iteration is trained with the accumulated silver and gold data [Xie et al.,

2020b, He et al., 2020]. Unless stated otherwise, the student model is trained

with three iterations.
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3.4 Experiments

3.4.1 Visual Dialog Data

We evaluate our proposed approach on the VisDial v1.0 and v0.9 datasets [Das

et al., 2017], collected by the AMT chatting between two workers about MS-

COCO images [Lin et al., 2014]. Each dialog consists of a caption from COCO

and a sequence of ten QA pairs. The VisDial v0.9 dataset has 83k dialogs on

COCO-train and 40k dialogs on COCO-validation images. More recently, [Das

et al., 2017] released additional 10k dialogs on Flickr images to use them as

validation and test splits for the VisDial v1.0 dataset. As a result, the VisDial

v1.0 dataset contains 123k, 2k, and 8k dialogs as train, validation, and test split.

This dataset is based on a Creative Commons Attribution 4.0 International

License.

3.4.2 Synthetic Data

The size of the silver VisDial data (i.e.,M) is 3.6M which is 30x larger than that

of the gold VisDial data (N = 0.12M). Note that the silver VisDial data contains

approximately 36M QA pairs since each dialog contains 10 QA pairs. 11.7M QA

pairs out of 36M (∼32%) are actually utilized after applying perplexity-based

data selection. Consequently, the total amount of the training data is nearly

12.9M QA pairs, combining the silver data (11.7M QA pairs) with the original

gold data (1.2M QA pairs).

3.4.3 Evaluation Protocol

We follow the standard evaluation protocol [Das et al., 2017] for model eval-

uation. The visual dialog models for both generative and discriminative tasks

have been evaluated by the retrieval-based evaluation metrics: mean reciprocal
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Figure 3.2: A detailed architecture of our proposed model. We visualize the fol-
lowing: (a) an encoder-decoder model, where the encoder aggregates the given
multimodal context and the decoder generates the target sentence; and (b) a
more detailed view of the encoder. TRM and Co-TRM denote the transformer
module and the co-attentional transformer module, respectively. ⊕ is the con-
catenation operation.

rank (MRR), recall@k (R@k), mean rank (Mean), and normalized discounted

cumulative gain (NDCG). Specifically, all dialogs in the VisDial contain a list of

100 answer candidates for each visual question, and there is one ground-truth

answer in the answer candidates. The model sorts the answer candidates by

the log-likelihood scores and then is evaluated by the four different metrics.

MRR, R@k, and Mean consider the rank of the single ground-truth answer,

while NDCG1 considers all relevant answers from the 100-answers list by us-

ing the densely annotated relevance scores for all answer candidates. NDCG is

regarded as the primary evaluation metric.

3.4.4 Implementation

As shown in Figure 3.2, we integrate the vision-and-language encoder [Lu et al.,

2019] with the transformer decoder for sequence generation [Rothe et al., 2020]

to train the teacher, the questioner, and the student. The decoder has 12 layers

1https://visualdialog.org/challenge/2019#evaluation
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of transformer blocks, with each block having 12 attention heads and a hidden

size of 768. The maximum sequence length of the encoder and the decoder is

256 and 25, respectively. We extract the feature vectors of the input images by

using the Faster R-CNN [Ren et al., 2015, Anderson et al., 2018a] pre-trained on

Visual Genome [Krishna et al., 2017]. The number of bounding boxes for each

image is fixed to 36. We set the threshold for PPL τ to 50. We train on one A100

GPU with a batch size of 72 for 70 epochs. Training time takes about 3 days. We

use the Adam optimizer [Kingma and Ba, 2014] with an initial learning rate 1e-

5. The learning rate is warmed up to 2e-5 until 10k iterations and linearly decays

to 1e-5. In visually-grounded dialog generation, the questioner and the teacher

decode the sequences using the top-k sampling [Fan et al., 2018, Holtzman

et al., 2018, Radford et al., 2019] with k = 7 and the temperature of 0.7. We

use the top-k sampling since its computation is cheap yielding accurate and

diverse sequences. Furthermore, we apply the 4-gram penalty [Paulus et al.,

2018, Klein et al., 2017] when generating visual questions to ensure that no

4-gram appears twice in the questions for each dialog.

3.5 Visual Dialog Results

3.5.1 Comparison with State-of-the-Art

We compare GST with the state-of-the-art approaches on the validation set of

the VisDial v1.0 and v0.9 datasets: UTC [Chen et al., 2022], MITVG [Chen

et al., 2021], VD-BERT [Wang et al., 2020b], LTMI [Nguyen et al., 2020b],

KBGN [Jiang et al., 2020a], DAM [Jiang et al., 2020b], ReDAN [Gan et al.,

2019], DMRM [Chen et al., 2020a], Primary [Guo et al., 2019], RvA [Niu et al.,

2019], CorefNMN [Kottur et al., 2018], CoAtt [Wu et al., 2018], HCIAE [Lu

et al., 2017], and MN [Das et al., 2017]. We used the validation splits for eval-

uation since all previous studies benchmarked the models on those splits. As
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shown in Table 3.1, GST significantly outperforms all compared methods on

all evaluation metrics. Compared with the state-of-the-art model, the student

model improves MRR 3.20% (56.83 → 60.03) and R@1 3.26% (47.14 → 50.40)

on the VisDial v0.9 dataset. The improvement is consistently observed on the

VisDial v1.0 dataset, boosting NDCG 1.61% (63.86 → 65.47) and MRR 0.97%

(52.22→ 53.19). Moreover, it is noticeable that recent strong models (i.e., UTC,

MITVG, and VD-BERT) are also built based on the pre-trained weights of ViL-

BERT [Lu et al., 2019], transformer [Vaswani et al., 2017], and BERT [Devlin

et al., 2019], respectively.

3.5.2 Ablation Study

We perform an ablation study to illustrate the effect of each component in GST.

We report the performance of four ablative models: student w/o PPL, student

w/o MCR, student w/o IIR, and teacher w/ CPT. Student w/o PPL denotes

the model that utilizes all generated QA pairs without applying the perplexity-

based data selection. Student w/o MCR does not inject noises into the inputs

of the student model. Student w/o IIR utilizes the entire CC12M [Changpinyo

et al., 2021] images to generate the silver VisDial data without applying in-

domain image retrieval. Lastly, the teacher with continued pre-training (CPT)

continues to perform pre-training with image-caption pairs in the silver VisDial

data. CPT is proposed to identify the effect of utilizing additional vision-and-

language data. Specifically, masked language modeling loss and masked image

region loss are optimized by following ViLBERT [Lu et al., 2019].

In Table 3.2, we observe all components (i.e., PPL, MCR, and IIR) play a

significant role in boosting the performance. Notably, by comparing the student

model with the student w/o IIR, we find that utilizing all the Web images does

not contribute to an accurate answer prediction. Moreover, we observe that
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Table 3.3: Results of GST in the low-data regime. We report NDCG scores
based on the VisDial v1.0 validation split. We assume a small subset of the
gold VisDial data (∼30%) is available.

NDCG

Model 1% 5% 10% 20% 30%

Teacher 27.64 50.04 54.46 57.14 60.67

Student
38.73

(+11.09)
56.60

(+6.56)
58.62

(+4.16)
60.92

(+3.78)
63.09

(+2.42)

CPT results in a considerable drop in performance. We conjecture that it is

due to low-precision image captions in the CC12M dataset, as mentioned in the

paper [Changpinyo et al., 2021]. However, the student still shows competitive

performance even if it also utilizes the captions in the dialog history.

3.5.3 Analysis on the Low-Data Regime

Is GST also helpful when gold data is extremely scarce? We investigate it to

identify the effect of GST in the low-data regime. We assume that only a small

subset of the gold VisDial data (1%, 5%, 10%, 20%, and 30%) is available.

Therefore, the size of the gold data is 0.01N , 0.05N , 0.1N , 0.2N , and 0.3N ,

respectively. We first train the teacher and the questioner on such scarce data,

and then these two agents generate a new silver VisDial data for unlabeled

images in the Conceptual 12M dataset [Changpinyo et al., 2021] with size 5N .

The student is then trained on the newly generated silver VisDial data and the

small amount of the gold VisDial data. The student is based on a single iterative

training, and PPL and MCR are still applied in this experiment. In Table 3.3,

GST yields huge improvements on both metrics, especially NDCG, boosting

up to 11.09 absolute points compared with the teacher. We observe that the

smaller the amount of gold data, the larger the performance gap between the

teacher and the student on NDCG. It implies that GST is helpful, especially
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when gold data is scarce. We believe these results are particularly remarkable

in other dialog-based tasks [Thomason et al., 2020, Alamri et al., 2019, Rashkin

et al., 2019, Li et al., 2017b] since they are based on small-scaled datasets, and

scaling up the size of the human-dialog datasets is laborious and expensive.

3.6 Adversarial Robustness Analysis

We introduce a comprehensive evaluation setup for adversarial robustness in

the VisDial. Specifically, we propose three different adversarial attacks: (1) the

FGSM attack, (2) a coreference attack, and (3) a random token attack. The

FGSM attack perturbs input visual features, and the others attack the dialog

history (i.e., textual inputs).

Baselines. We compare our student model against three ablative baselines: (1)

the teacher model, (2) the student model utilizing the entire CC12M images

without applying the in-domain image retrieval (i.e., student w/o IIR), and (3)

the student model without multimodal consistency regularization (i.e., student

w/o MCR).

3.6.1 Adversarial Robustness Against Visual Attacks

The Fast Gradient Signed Method (FGSM) [Goodfellow et al., 2015] is a white-

box attack that perturbs the visual inputs based on the gradients of the loss

with respect to the visual inputs. Formally,

FGSM(x) = x + ϵ · sign(∇xL(x, y)) (3.3)

where x and y denote the visual inputs and the corresponding ground-truth

labels, respectively. ϵ is a hyperparameter that adjusts the intensity of pertur-

bations. However, different from the above setup, each question in the VisDial

can have one or more relevant answers in the list of answer candidates. We thus
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Figure 3.3: Adversarial robustness against FGSM attack on the VisDial v1.0
validation split. We report NDCG scores of each model.

define the FGSM attack for the VisDial as follows:

FGSM(v) = v + ϵ · sign(

C∑
c=1

r(at,c) · ∇vL(ct, at,c)) (3.4)

where C = 100 and r(·) denote the number of answer candidates and a function

that returns the human-annotated relevance scores for each answer candidate,

respectively. The relevance scores range from 0 to 1. ct and at,c are the context

(i.e., ct ≜ (v, d<t, qt)) and the c-th answer candidate, respectively. Equation 3.4

indicates that the gradients of the loss for all relevant answers are considered

for the FGSM attack.

As shown in Figure 3.3, we validate the models with four different epsilon

values ϵ ∈ {0.01, 0.02, 0.05, 0.1}. The student model shows very significant im-

provements in NDCG compared with the teacher model. Specifically, the perfor-

mance gap between the student model with three iterations (i.e., student-iter3)

and the teacher model widens up to 23.83 absolute points (21.60 → 45.43)

when ϵ is 0.1. It illustrates that GST makes the visual dialog model robust
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Figure 3.4: A visualization of cosine similarities between clean and perturbed
image features in both input and output levels. We employ the FGSM attack
with ϵ = 0.1 to corrupt the clean images.

against the FGSM attack even though the student model is not optimized for

adversarial robustness. Furthermore, we can identify the efficacy of the iterative

training as the intensity of the perturbations increases. The NDCG scores are

boosted from 37.82% (iter1) to 45.43% (iter3) at ϵ = 0.1. Finally, in-domain

image retrieval (IIR) and multimodal consistency regularization (MCR) boost

adversarial robustness in the FGSM attack. It implies: (1) the additional use of

the discarded images along with the synthetic dialog does not bring any gains

and (2) learning perturbed multimodal inputs improves the robustness.

We hypothesize that MCR, combined with learning from diverse Web im-

ages, encourages the model to learn more robust, invariant image representa-

tions that are less sensitive to adversarial perturbations. To validate this, we

conduct an analysis comparing the student model (with MCR) with two abla-

tive models: (1) the student model without MCR, and (2) the teacher model,

which has no access to Web images or MCR. For each model, we inject adversar-

ial perturbations generated by the FGSM attack [Goodfellow et al., 2015] with

ϵ = 0.1 into the input images and compute two types of similarity: (1) the input-
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level similarity between clean and perturbed images, and (2) the output-level

similarity between corresponding clean and perturbed outputs. We compute

the feature-level similarities by using cosine similarity, and the output-level fea-

tures are derived from each model’s encoder (see Figure 3.2). In Figure 3.4, all

input-level cosine similarities are close to one, indicating that only small pertur-

bations were injected into the input images. However, in terms of the output-

level similarity, the student model exhibits a significantly higher similarity score

compared to both baselines. This demonstrates that the combination of MCR

and the use of unlabeled Web images reduces the student model’s sensitivity to

adversarial noise, which may explain its improved adversarial robustness.

3.6.2 Adversarial Robustness Against Textual Attacks

We also study the adversarial robustness against textual attacks to illustrate the

effect of GST. We chose to perturb the dialog history because it contains useful

information to answer the given question (e.g., cues for pronoun). However,

according to recent studies [Agarwal et al., 2020, Kang et al., 2021] in the

VisDial, not all questions require the dialog history to respond with the correct

answers. So the work [Agarwal et al., 2020] has proposed a challenging subset

of the VisDial validation dataset called the VisDialConv. The VisDialConv

dataset only contains questions that necessarily require the dialog history to

answer (e.g., can you tell what it is for?). The crowd-workers conducted a

manual inspection to select such context-dependent questions.

Based on the VisDialConv dataset, we apply two different black-box attacks.

First, we propose the coreference attack, which substitutes the noun phrases or

pronouns in the dialog history with their synonyms to fool the VisDial models.

Specifically, we leverage the off-the-shelf neural coreference resolution tool2 and

2https://github.com/huggingface/neuralcoref based on Clark and Manning [2016].
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find words in the dialog history that refer to objects such as those mentioned in

a given question. We also borrow the counter-fitting word embeddings [Mrkšić

et al., 2016] similar to textfooler [Jin et al., 2020] to retrieve the synonyms. We

greedily substitute the words with the synonyms with a minimum cosine dis-

tance in the embedding space since we observe that the other synonyms harm

the original semantics of the dialog history. In Table 3.4, the student-iter3 model

outperforms the teacher model on NDCG by a large margin (2.84%, 52.60 →

55.44) in the coreference attack. Furthermore, we do not see any merit in utiliz-

ing the entire CC12M [Changpinyo et al., 2021] images and the corresponding

synthetic dialog data, comparing the student-iter1-full with the student-iter1.

The random token attack randomly replaces the word or sub-word tokens

in the dialog history with a special [MASK] token. The pre-trained BERTBASE

model [Devlin et al., 2019] then recovers the masked tokens with masked lan-

guage modeling (MLM) similar to BERT-ATTACK [Li et al., 2020]. Finally,

the perturbed dialog history is fed into the visual dialog models. We conduct

this experiment by adjusting the probability of random masking up to 40%. As

shown in Table 3.4, we evaluate each model with five random seeds and report

the arithmetic mean and the standard deviations. The results demonstrate that

GST is relatively robust against the random token attack compared with the

baseline models.

3.7 Human Evaluation

Does GST expand the breath of the task that visual dialog models can per-

form? We randomly sample 20 in-domain images close to the cut-off point of

in-domain image retrieval. Then, we generate 100 open-ended visual questions

for human evaluation. The student and teacher models generate corresponding

answers to the questions. By following evaluation protocols defined by Li et al.
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Table 3.5: Results of human evaluation on 100 generated answers. We ask five
human judges to decide which of two responses from the student and teacher
models is more accurate.

Setting Student Win Student Lose Tie

Multi-turn
0.39

(195/500)
0.13

(63/500)
0.48

(242/500)

[2016], we ask 5 human judges to decide which of the two answers for each

question is more accurate. Ties are permitted, and the order of two responses

were randomly shuffled. Ties include: (1) both responses are identical, (2) both

responses are incorrect, and (3) both responses are correct, but it is hard to

decide which one is more accurate. As shown in Table 3.5, the student model

shows significant improvements in the winning rate compared with the teacher

model. This indicates that the student model generates more accurate answers

to visual questions across a broader range of images.

3.8 Qualitative Analysis

3.8.1 Comparison Between Silver and Gold Data

For qualitative analysis of the silver data, we visualize the generated conversa-

tions from our proposed models and the ones from humans. We excerpt the hu-

man conversation from the VisDial v1.0 validation dataset, and the questioner

and the student generate the machine conversation using the image and the

caption in the validation data. As shown in Figure 3.5, diverse visual questions

are generated in the silver VisDial data. For example, in D10 of the last exam-

ple, the questioner asks about “a car” not mentioned by the human questioner

and not even presented in the image caption. The student responds correctly

to the question. Likewise, from D3 to D6 in the first example, the questioner

deals with “a cell phone,” whereas the human questioner deals with different
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Figure 3.5: A visualization of the gold and the silver data on the VisDial v1.0
validation split.

topics. However, the student sometimes fails to generate correct answers (i.e.,

the red-colored text), showing the importance of more precise visual grounding.

3.8.2 A Visualization of Answer Predictions

We visualize the ground-truth answer (i.e., the gold answer) and the answer

predictions from the student and the teacher models given the same context.

As shown in Figure 3.6, the student model indeed produces correct answers

compared with the teacher model. Moreover, both models produce many cor-

rect or plausible answers, although the predicted answers differ from the gold

answers (see the blue-colored text). For instance, for the last question in the

third example (i.e., Is she wearing a bathing suit? ), the student answers “wet-

suit” to the question, although the ground-truth answer is “no”. We conjecture

that the ability to generate such flexible answers is evaluated as a high NDCG

performance; NDCG considers all relevant responses in the answer candidates.
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3.9 Discussions

We develop the teacher, the questioner, and the student models on top of ViL-

BERT [Lu et al., 2019], which leverages vision-and-language pre-training. Thus,

the teacher can be understood as a typical model that follows the pretrain-then-

transfer learning strategy mentioned in the introduction. On the other hand, the

student leverages both pre-training and generative self-training. By comparing

the student with the teacher, we identify that self-supervised pre-training and

GST provide complementary modeling capabilities.

One of the major limitations of our approach is the learning efficiency of

the student model. We demonstrate the effectiveness of our proposed method,

but there can be more efficient ways to improve the visual dialog model. For ex-

ample, our method generates the dialog data without considering the difficulty

of the question. We believe that competency-aware or curriculum-based visual

dialog generation can make our proposed self-training algorithm more efficient

and powerful. We will leave it as a future work.

3.10 Conclusion

We propose a semi-supervised learning approach for the VisDial, called GST,

that generates a synthetic visual dialog dataset for unlabeled Web images via

multimodal conditional text generation. GST achieves the new state-of-the-art

performance on the VisDial v1.0 and v0.9 datasets. Moreover, we demonstrate

the efficacy of GST in the low-data regime and adversarial robustness analysis.

Finally, GST produces diverse dialogs compared with the human dialog. We

believe the idea of GST is generally applicable to other multimodal generative

domains and expect GST to open the door to leveraging unlabeled images for

visually-grounded interaction.
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Figure 3.6: A visualization of answer predictions from the student and the
teacher models. The red-colored text is an incorrect answer. The blue-colored
text is not a ground-truth answer, but it seems correct or plausible.
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Chapter 4

Reasoning about Underspecified
Instructions

4.1 Introduction

Advances in robotics and artificial intelligence are increasingly bringing robots

into our daily lives, such as household assistants [Black et al., 2024]. To get

closer to a broader range of users like non-experts, robots interact with humans

and make decisions based on the interaction. Natural language is a preferred

interface for human-robot interaction because of its intuitive and accessible

nature [Kollar et al., 2010]. However, it is inherently ambiguous and largely

depends on context [Piantadosi et al., 2012, Fried et al., 2022], which potentially

leads to misunderstandings, especially for robots that lack contextual awareness.

Therefore, reasoning about ambiguous and underspecified language instructions

by leveraging contextual information is an important challenge for robots.

A line of research in human-robot interaction [Shridhar and Hsu, 2018,

Hatori et al., 2018, Zhang et al., 2021, Yang et al., 2022, Mo et al., 2022] has
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addressed the challenge in the context of interactive object grasping (IOG). A

typical scenario of IOG starts mentioning the target object, such as “Give me

the plastic bottle”, but there is more than one object in the scene that meets

the instruction. The robot should disambiguate the target object by asking

questions to the interlocutor and then perform object grasping.

While the progress of IOG is exciting, the current scenario limits the ability

of robots to understand beyond the literal meaning of natural language in-

structions. Specifically, instructions in the existing scenario clearly specify the

category of the target object (e.g., bottle). In other words, current IOG systems

may work properly when the target object’s category is given. However, we hu-

mans often convey our intended meanings by relying on context for streamlined

communication and reduced cognitive load [Searle and Searle, 1969, Frank and

Goodman, 2012]. For example, when we need some water and want our inter-

locutor to bring it, we briefly say “I am thirsty.” The interlocutor then enriches

the literal meaning of such underspecified instruction based on various types

of shared context (e.g., visual information and dialogue context) and reason

about context-appropriate behavior. This ability to interpret and use language

in context to achieve goals is known as pragmatics [Fried et al., 2022, Goodman

and Frank, 2016, Smith et al., 2013].

We argue that the next-generation robotic system should have pragmatic

reasoning ability — capture the user’s intention with contextual information

and achieve the desired goal. To this end, we introduce a new task, Pragmatic-

IOG, to study the pragmatic reasoning behavior of embodied language agents.

As shown in Figure 4.1, we consider a scenario where a human user begins a

conversation with an intention-oriented instruction like “My device runs out of

battery.” The robot should then find all valid object candidates (e.g., the red-

colored object regions in Figure 4.1) via visual grounding [Yu et al., 2016] and
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Figure 4.1: Overview of interactive object grasping with intention-oriented in-
struction. The initial instruction does not contain the target object’s category.

ask a question for disambiguation. After receiving the user’s response, the robot

should pinpoint the target object and grasp the desired object. To study this

problem, we collect a new dataset called Intention-oriented Multi-modal Dia-

logue (IM-Dial). The IM-Dial dataset contains 800 images and 500 human-to-

human dialogue data regarding 86 categories of everyday objects. The dialogue

consists of intention-oriented instruction and a series of question-and-answer

pairs for target object discovery.

We propose a new robotic system that can reason about intention-oriented

natural language instructions of the user and grasp desired objects through

human-robot interaction called PRagmatic Object Grasping (PROGrasp).

PROGrasp consists of four modules: (1) a visual grounding module (VG) that

predicts the region coordinates of valid objects, (2) a question generation mod-

ule (Q-gen) that learns to generate questions to identify the user’s intention, (3)

an answer interpretation module (A-int) that interprets the human user’s re-

sponse given the multi-modal context, and (4) an object-grasping module (OG)

to pick up the inferred object.

PROGrasp trains VG, Q-gen, and A-int on the IM-Dial data. After train-
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ing, PROGrasp performs our proposed task by interacting with the human

user. Specifically, VG first predicts a set of object region candidates given the

intention-oriented instruction. Q-gen then generates a question, and the user

responds to the question. Next, PROGrasp determines the target region among

the region candidates based on how well each candidate region explains the

visual and dialogue context, which we call pragmatic inference. We implement

pragmatic inference as a multi-agent reasoning of VG and A-int where VG

evaluates the likelihood of each region candidate given the visual and dialogue

context, and A-int rescores alternative region candidates by interpreting the

user’s response. Finally, OG computes the 3D coordinates of the inferred re-

gion and performs object grasping.

We conduct offline and online experiments on the IM-Dial dataset. In of-

fline experiments, we study how well PROGrasp identifies the target object.

PROGrasp significantly improves the accuracy of offline experiments by 35%

compared with the baselines. Moreover, PROGrasp outperforms the powerful

multimodal foundation model [OpenAI, 2023b] on validation data. In online

experiments, we use a physical robot arm to evaluate the success rate of object

grasping. PROGrasp boosts the success rate by 17%. Furthermore, our system

efficiently identifies the target object through fewer interactions than baselines.

Finally, we perform qualitative analysis, visualizing diverse samples.

Our contributions are three-fold. First, we propose an interactive object-

grasping system (i.e., PROGrasp) that capably understands the human user’s

intention and grasps the desired object through dialogue. Second, we introduce a

new task Pragmatic-IOG, along with a novel dataset called Intention-oriented

Multi-modal Dialogue (IM-Dial). Third, through extensive experiments, our

robotic system validates its (1) efficacy in both offline and online experiments

and (2) efficiency when identifying the target object via pragmatic inference.
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4.2 Related Work

4.2.1 Language-Guided Object Grasping

There has been extensive research on developing object-grasping systems that

can understand natural language. Some studies [Paul et al., 2017, Shridhar

and Hsu, 2017, Venkatesh et al., 2021, Nguyen et al., 2020a, Kim et al., 2023]

make robots manipulate objects only with initial language instruction, assuming

that the instruction is enough to identify the desired object. However, natural

language is inherently ambiguous [Piantadosi et al., 2012]. Therefore, a line of

research [Shridhar and Hsu, 2018, Hatori et al., 2018, Zhang et al., 2021, Yang

et al., 2022, Mo et al., 2022], which we call interactive object grasping (IOG),

considers the scenario where robots need more information to disambiguate the

target object. They typically generate questions and perform object grasping

based on the response from a human user. Our approach belongs to IOG, but it

differs from previous studies in two aspects. First, prior work in IOG considers a

scenario where the category of the target object is clearly specified. However, we

design a task scenario that requires robots to understand the semantic meaning

and, by extension, the intended meaning of the user’s instruction. Accordingly,

intention-oriented instructions focus on the user’s intention without specifying

the category of the target object. Second, previous studies define the format of

either questions or responses. Specifically, the questions are fixed (e.g., “Which

one?”) [Hatori et al., 2018, Whitney et al., 2017] or based on templates [Shridhar

and Hsu, 2018, Zhang et al., 2021, Yang et al., 2022, Mo et al., 2022]. The

answer formats are also binary [Hatori et al., 2018], a single word [Whitney

et al., 2017], or based on a pre-defined pool [Shridhar and Hsu, 2018, Zhang

et al., 2021, Yang et al., 2022, Mo et al., 2022]. However, PROGrasp does not

impose any constraints on the format of the questions and responses. Our Q-gen
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generates unconstrained questions without relying on any templates, and A-int

understands various types of responses, enabling non-expert users to interact

with the robot more naturally.

4.2.2 Pragmatics

The study of how linguistic meaning is affected by context [Grice, 1975, Searle

and Searle, 1969, Frank and Goodman, 2012], known as pragmatics, has a long

history of research. According to the work [Fried et al., 2022], there are four

kinds of well-studied tasks in the field of pragmatics: reference games [Frank

and Goodman, 2012, Monroe et al., 2017], image captioning [Andreas and Klein,

2016, Cohn-Gordon et al., 2018], instruction following [Chen and Mooney, 2011,

Anderson et al., 2018b], and grounded dialogue [De Vries et al., 2017, Kim et al.,

2019, Chai et al., 2014, Kang et al., 2023]. Our work belongs to the last category,

but it is the first work that integrates grounded goal-oriented dialogue into a

real-world robot arm for object grasping. Regarding computational modeling,

PROGrasp shares the spirit with the Rational Speech Acts (RSA) [Frank and

Goodman, 2012, Goodman and Frank, 2016]. We propose a multi-agent reason-

ing method (i.e., pragmatic inference) to identify target objects accurately and

efficiently by interpreting the human user’s response.

4.3 Approach

4.3.1 Background

As the Web-scale data sources [Changpinyo et al., 2021, Schuhmann et al.,

2021] are publicly available, finetuning the model pre-trained on such datasets

to the specific task has become a de facto standard strategy in AI. Accord-

ingly, there has been a lot of multi-modal pre-training methods [Wang et al.,

2022, Lu et al., 2019, Tan and Bansal, 2019] trained on the large-scale image-
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text pairs. We employ a simple yet powerful multi-modal sequence-to-sequence

model, OFA [Wang et al., 2022], since it can cover various multi-modal tasks

with a unified architecture. OFA is pre-trained on a wide range of multi-modal

and uni-modal datasets with sequence-to-sequence learning [Sutskever et al.,

2014, Vaswani et al., 2017]. The learning objective of OFA is to optimize:

argmax
θ

|y|∑
i=1

logPθ(yi|y<i, v, x) (4.1)

where x and y denote the input and target sequences, respectively. y<i denotes

all tokens before the i-th token in the target sequence, and v is visual informa-

tion. Pθ represents the probability derived from the model with the parameters

θ. The encoder encodes x and v and conveys the hidden states to the decoder.

The decoder predicts the next token yi given a set of preceding tokens y<i and

the hidden states of the encoder. We train our proposed modules in PROGrasp

(i.e., VG, Q-gen, and A-int) by finetuning OFA on the IM-Dial dataset. More

details are discussed in the following Section.

4.3.2 Problem Statement

The goal of Pragmatic-IOG is to discover the target object’s region coordinates

r∗ = ⟨x1, y1, x2, y2⟩ in 2D images through human-robot interaction and pick up

the object. We assume that a human user initially provides intention-oriented

natural language instruction ℓ, and there is one target object in the given 2D

image I. An agent should ask a natural language question q to the user to iden-

tify the target object, and the user should provide an answer a. The dialogue

history D is initialized to ℓ, and question and answer pairs at each round are ap-

pended to the dialogue history. The agent should predict the region coordinates

r̂ after T rounds of dialogue. Finally, it performs object grasping, computing

the 3D coordinates of the target object based on r̂ and the point cloud.

47



Figure 4.2: Illustration of the inference step in PROGrasp for T = 1. VG first
performs object grounding using the dialogue history. Q-gen then selects the
object candidate to ask and generates a question. After obtaining the response
from the user, VG cooperates with A-int to determine the target object region.
The object-grasping module finally grasps the object by computing the 3D
coordinates of the target object.

4.3.3 Pragmatic Object Grasping (PROGrasp)

Visual Grounding Module. The visual grounding module (VG) aims to

localize objects based on the multi-modal context. Specifically, the Intention-

oriented Multi-modal Dialogue (IM-Dial) dataset contains an image I, a visually-

grounded dialogue D = { ℓ︸︷︷︸
D0

, (q1, a1)︸ ︷︷ ︸
D1

, · · · , (qN , aN )︸ ︷︷ ︸
DN

}, and region labels R =

{R0, · · · ,RN} where each element Rn = {rvgi }
|Rn|
i=1 is a set of object regions

that VG should predict given the dialogue history D≤n. D≤n denotes all dia-

logue data up to and including the n-th round. Consequently, VG is trained to

maximize the log-likelihood of the ground-truth regions:

argmax
θ

N∑
n=0

logPVθ
(Rn|I,D≤n). (4.2)

PROGrasp regards the concatenation of the region coordinates in Rn as the

target sequence in sequence-to-sequence learning and trains VG on top of the

pre-trained OFA model [Wang et al., 2022].
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Question Generation and Answer Interpretation Modules. PROGrasp

trains the question generation (Q-gen) and answer interpretation (A-int) mod-

ules to produce the instructions from the human questioner and the human

answerer, respectively. First, Q-gen learns to generate human-annotated ques-

tions in the IM-Dial dataset, given an input image, the dialogue history, and

an object region for questioning as follows:

argmax
θ

N∑
n=1

logPQθ
(qn|I,D≤n−1, r

q
n) (4.3)

where the object region rqn is annotated by the human questioner when collect-

ing the IM-Dial dataset. Regarding sequence-to-sequence learning, the target

sequence is the question qn, and the triplet (I,D≤n−1, r
q
n) is fed into the en-

coder. Next, the answer interpretation module (A-int), which is a proxy for

the human user, learns to generate the response of the human answerer. It is

optimized by maximizing the log-likelihood of the ground-truth answer:

argmax
θ

N∑
n=1

logPAθ
(an|I, r∗, qn). (4.4)

Note that A-int takes the ground-truth region coordinates r∗ during training

and implicitly learns the semantic alignment between r∗ and the question-and-

answer pair (qn, an). Moreover, we assume that the answer distribution is inde-

pendent of the dialogue history (i.e., P (an|I,D≤n−1, r
∗, qn) = P (an|I, r∗, qn))

by following Lee et al. [2018]. We also implement both Q-gen and A-int by

finetuning the pre-trained OFA model [Wang et al., 2022].

Inference. The inference step of PROGrasp is described in Algorithm 1 and

Figure 4.2. PROGrasp obtains an image I from a camera. A human user pro-

vides intention-oriented instruction ℓ. PROGrasp proceeds T rounds of dialogue

in the inference step, and T is a hyperparameter. VG (i.e, PVθ
) first predicts a
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Algorithm 1 Pragmatic Object Grasping

Require: Modules for VG (PVθ
), Q-gen (PQθ

), A-int (PAθ
)

Require: Module for object grasping (O)
Require: 2D RGB image I and dialogue history D ← {ℓ}
Require: A human user to interact with the robotic system
Require: The empty set of object regions R = ∅
1: for t← 1 to T do
2: R̃t−1 ← PVθ

(·|I,D≤t−1) where R̃t−1 =
{
r1, · · · , r|R̃|

}
3: R ← R∪ R̃t−1

4: q̃t ← PQθ
(·|I,D≤t−1, r

q
t ) where rqt ∼ R

5: The user provides an answer ãt to the question q̃t
6: D ← D ∪ {q̃t, ãt}
7: r̂ ← argmax

r∈R
log(PAθ

(ãt|I, r, q̃t)λ · PVθ
(r|I,D≤t)

1−λ)

8: end for
9: Grasp the object O(r̂,P) with r̂ and the point cloud P

set of object regions R̃ and saves it to the superset R. PROGrasp accumulates

the object region candidates predicted in each round of dialogue to maximize

the probability of having the target object’s region coordinates in the set R.

PROGrasp then samples an object region rqt from R. The image, the dialogue

history, and the sampled object region are fed into Q-gen (i.e., PQθ
) to produce

a question (e.g., “Should I get a banana?” in Figure 4.2). Next, the human user

answers the question by checking whether the object mentioned in the question

corresponds to the target object. After receiving the user’s response, PROGrasp

saves the question-and-answer pairs to the dialogue history and evaluates each

object region candidate r in the set R. In the evaluation, VG computes the

likelihood of each region candidate given the multi-modal context, and A-int

rescores each candidate r whether it describes the question and the user’s re-

sponse (q̃t, ãt). In other words, VG cooperates with A-int to determine the best

region r̂ for the target by evaluating how well each candidate explains the visual

and dialogue context. We call it pragmatic inference (see Figure 4.2). In line 7
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at Algorithm 1, λ is a rationality parameter [Monroe et al., 2017, Fried et al.,

2018, Shen et al., 2019] in the range [0, 1] that indicates the relative importance

of the evaluation from A-int in pragmatic inference.

Object Grasping. The object-grasping module (OG) first computes the 3D

coordinates of the predicted object using the 2D region coordinates r̂ and the

point cloud P. Specifically, OG matches the 2D object region with the point

cloud on the identical resolution and then segments points inside the region. We

employ the RANSAC [Schnabel et al., 2007] to remove the table plane from the

segmented points. The 3D target coordinates are computed by averaging the

segmented points. Finally, OG computes the motion planning [Coleman et al.,

2014] and performs object grasping.

4.4 Experimental Setup

4.4.1 Dataset

We evaluate our proposed method on the IM-Dial dataset, collected by the

chatting between two players about images. The IM-Dial dataset consists of

800 images and 500 human-to-human dialogue data that cover 86 categories of

everyday objects, as shown in Figure 4.3. We divide the IM-Dial dataset into

five splits: train, validation, test-seen, test-unseen, and test-cluttered. The train

split contains 400 images and corresponding dialogue data for training. The val-

idation split has 100 image and dialogue pairs. The test-seen, test-unseen, and

test-cluttered data contain 100 pairs of images and intention-oriented instruc-

tions each. Note that these test splits do not have question-and-answer data, so

the robotic system should identify the target object interacting with a human

user. The test-unseen split includes never-before-seen objects not observed in

the training procedure. The goal of the test-unseen split is to evaluate the gener-
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Figure 4.3: The 86 categories of everyday objects used in the experiments.

alization ability of the robotic system. Furthermore, we define the test-cluttered

as a cluttered version of the test-seen split where objects are arbitrarily placed

(e.g., (a) in Figure 4.7).

4.4.2 Robotic Platform

We conduct online experiments using a physical robot arm, the 6-DoF Ki-

nova Gen3 lite, with a two-fingered gripper. Our system utilizes Intel Realsense

Depth Camera D435 to get an RGB-D image. The remote server processes our

proposed algorithm and communicates with the robotic platform, which locally

computes motion trajectory planning.

4.4.3 Compared Methods

We compare PROGrasp with four methods:

• Zero-Shot: The zero-shot approach is a visual grounding model not

trained on the IM-Dial dataset. We implement it by finetuning the pre-

trained OFA model on the visual grounding dataset, RefCOCO [Yu et al.,

2016]. This approach predicts the object region given an input image and

intention-oriented instruction (i.e., r̂ ← argmax
r∈R

PVθ
(r|I,D = ℓ)).

• SilentGrasp: SilentGrasp is an ablative model of PROGrasp that does

not have the question generation (Q-gen) and answer interpretation (A-
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int) modules. It predicts the object region in the same way as Zero-Shot,

but the visual grounding module (VG) is trained on the IM-Dial dataset.

• LiteralGrasp: LiteralGrasp is another ablative method of PROGrasp

that does not have A-int. It is equivalent to PROGrasp without pragmatic

inference (i.e., λ = 0).

• A-int-only: This method is equivalent to PROGrasp that does not utilize

VG in pragmatic inference (i.e., λ = 1).

4.5 Results and Discussions

4.5.1 Results on Offline Experiments

Evaluation Protocol. The offline experiment aims to verify how well the

robotic system discovers the target object through human-robot natural lan-

guage interaction. We measure the Intersection over Union (IoU) between the

target object region r∗ and the predicted region after the interaction r̂. The

IoU is defined as the overlapping region between the two divided by their union

region. The percentage of examples with an IoU value greater than 0.5 is typ-

ically reported as Acc@0.5. However, the threshold value of 0.5 may not be a

reliable indicator to estimate the success of object grasping since object grasp-

ing requires accurate prediction of the target coordinates. We thus additionally

report Acc@0.9, which requires more tight alignment between r∗ and r̂.

Results on the Validation Split. We first evaluate PROGrasp and the

compared methods on the validation split. As shown in Table 4.1, PROGrasp

outperforms all compared methods on all evaluation metrics. It indicates our

proposed components (i.e., Q-gen, A-int, and pragmatic inference) play a cru-

cial role in boosting performance. Moreover, comparing Zero-Shot and Silent-
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Grasp, even the strong pre-trained model performs poorly without adapting to

Pragmatic-IOG.

We further study a new setting for Zero-Shot and SilentGrasp, called Ground-

ing from Dialog History (GDH). We naturally assume Zero-Shot and Silent-

Grasp can only access the intention-oriented instruction (i.e., ℓ) in the in-

ference phase since neither approach has a module for question generation.

However, the initial instruction is insufficient to pinpoint the target object. In

GDH, we assume that Zero-Shot and SilentGrasp can access the ground-truth

human-to-human dialogue history, so we feed the entire dialogue history (i.e.,

intention-oriented instruction and a set of question and answer pairs) into the

models. As shown in Table 4.1, GDH significantly boosts Acc@0.9 of Zero-Shot

(4%→16%) and SilentGrasp (44%→72%). The results indicate that additional

question and answer pairs contain detailed information to identify the target

object. Remarkably, PROGrasp outperforms SilentGrasp with GDH, although

it does not require the ground-truth dialogue history. The results illustrate that

PROGrasp works effectively, even in a more realistic scenario.

Results on the Test Splits. We compare PROGrasp with the compared

methods on the test-seen, test-unseen, and test-cluttered splits. In Table 4.1,

PROGrasp consistently improves on all test splits compared with Zero-Shot,

SilentGrasp, A-int-only, and LiteralGrasp. Specifically, compared with Literal-

Grasp, PROGrasp improves Acc@0.5 on ten points (73%→83%) and Acc@0.9

on seven points (54%→61%) in the test-unseen split. We could not investigate

the results of GDH on the test splits since the test splits do not have ground-

truth dialogue data. Surprisingly, PROGrasp shows decent Acc@0.5 scores even

in the test-cluttered and test-unseen splits, but relatively lower scores are ob-

served on Acc@0.9. It illustrates that (1) accurately identifying partially oc-
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Table 4.2: The effect of pragmatic inference (PI).

PI
Test-Seen
(N=100)

Correct Incorrect

w
/
o

P
I Correct 83% 2%

Incorrect 7% 8%

PI
Test-Unseen
(N=100)

Correct Incorrect

w
/
o

P
I Correct 72% 1%

Incorrect 11% 16%

Table 4.3: Comparison with the multimodal foundation model.

Method Acc@0.1 Acc@0.5 Acc@0.9

GPT-4V [OpenAI, 2023b] 29% 9% 1%
GPT-4 [OpenAI, 2023a] + VG 69% 69% 63%
GPT-4V [OpenAI, 2023b] + VG 82% 82% 68%

PROGrasp (ours) 87% 87% 79%

cluded target objects and (2) generalizing a robotic system to previously unseen

objects are challenging aspects of this task. We will discuss more details in the

qualitative analysis.

Analysis on Pragmatic Inference. We identify how predictions of PRO-

Grasp change due to the use of pragmatic inference (PI). Thus, we employ

two models: PROGrasp with and without PI, and PROGrasp without PI is

equivalent to LiteralGrasp. As shown in Table 4.2, pragmatic inference changes

incorrect predictions (7% and 11%) to correct predictions in test-seen and test-

unseen splits, respectively. Only a small percentage of correct predictions (2%

and 1%) were changed to incorrect predictions. Furthermore, pragmatic in-

ference recovers 46.67% (7/15) and 40.74% (11/27) incorrect predictions from

LiteralGrasp by employing the predictions of the answer interpretation module.

It indicates that pragmatic inference effectively discovers target objects.

Comparison with Foundation Models. We further identify the performance

of the state-of-the-art foundation models, GPT-4 [OpenAI, 2023a] and GPT-
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4V(ision) [OpenAI, 2023b] on the validation split. Both models are provided

detailed text prompts (see Figure 4.4). Table 4.3 shows the results. We observe

that GPT-4V infers the target object well, but it poorly specifies the region

coordinates of the target object. We thus study a hybrid approach: (1) GPT-4

and GPT-4V interacts with users and generates a distinctive caption of the

best-fit object and (2) our VG model then predicts the coordinates r̂ based on

the caption. In Table 4.3, we draw two observations. First, PROGrasp outper-

forms existing foundation models on all evaluation metrics. It demonstrates the

significance of pragmatic inference. Second, the multimodal foundation model

(i.e., GPT-4V) shows improved performance compared with the language-only

model (i.e., GPT-4). This indicates that the Pragmatic-IOG task requires un-

derstanding of visual inputs, including spatial relationships between objects or

visual attributes of objects.

Hyperparameter Study. We study how the hyperparameters in PROGrasp

(i.e., λ and T ) affect performance. Note that λ indicates the importance of

the evaluation from A-int in pragmatic inference, and T denotes the number of

interactions between PROGrasp and the human in Algorithm 1. As shown in

Figure 4.5, we visualize the Acc@0.9 performance on the validation split. The

blue, red, and green lines denote the results when T = 1, T = 2, and T = 3,

respectively. We observe a huge performance gap between T = 1 and T = 2. It

implies that many incorrect guesses in the first round of dialogue are corrected

in the second round. Moreover, comparing T = 2 with T = 3, improvements

seem saturated.

We also identify that performance varies depending on the value of the

rationality parameter λ. LiteralGrasp is equivalent to λ = 0, and A-int-only

corresponds to λ = 1. The best results are observed in λ = 0.9 across all T

57



Figure 4.4: A text prompt for foundation models.

Figure 4.5: Validation scores adjusting the hyperparameters, λ and T .
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values. However, we do not see any merit in PROGrasp compared with Liter-

alGrasp when T = 1. To delve into this phenomenon, we visualize the upper

bound performance for each T value. The upper bound is defined as the per-

formance when the system perfectly selects the object region in a set of object

region candidates R. The upper bound performance of T = 1 is 55%, and PRO-

Grasp and LiteralGrasp both show 54%. It illustrates that there is little room

for improvement in T = 1. In contrast, the upper bound of T = 2 is 85%, and

LiteralGrasp shows 71% in Figure 4.5. PROGrasp boosts 6% compared with

LiteralGrasp (71%→77%). Likewise, we observe 4% gains (75%→79%) when

T = 3. Unless stated otherwise, λ is 0.9, and T is 3.

Communicative Efficiency. Beyond task success, communicative efficiency

is also an important criterion for pragmatic systems [Fried et al., 2022]. Accord-

ingly, we measure the average number of interactions (i.e., question answering)

required for the system to identify the target object. In this study, we assume

that the dialogue immediately ends when the Intersection over Union (IoU)

between the predicted and target regions is greater than 0.5. The efficiency can

range from 1.0 to T = 3. We compare PROGrasp with three baselines: Random,

A-int-only, and LiteralGrasp. The Random randomly selects the predicted ob-

ject in the set of candidates (i.e., R in Algorithm 1). In Table 4.4, PROGrasp

consistently improves the efficiency across all test splits. It indicates that our

system efficiently identifies the target object through fewer interactions.

4.5.2 Results on Online Experiments

Evaluation Protocol. We reproduce 100 images in the test-seen split and con-

duct online experiments to study how well the system picks the desired object

up through human-robot dialogue. We compare PROGrasp with SilentGrasp
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Table 4.4: Analysis of communicative efficiency. ↓ indicates lower is better.

Avg. # of Interactions ↓

Method Test-Seen Test-Unseen Test-Cluttered

Random 1.76 2.00 1.98
A-int 1.60 1.78 1.76
LiteralGrasp 1.55 1.78 1.71

PROGrasp (ours) 1.53 1.72 1.69

Table 4.5: Results on the online experiments.

Ambiguous Non-Ambiguous Total

Method Object Discovery / Success Rate

SilentGrasp 42 / 30 78 / 38 56 / 33
LiteralGrasp 77 / 47 90 / 45 82 / 46

PROGrasp (ours) 80 / 53 90 / 45 84 / 50

and LiteralGrasp. The human rater evaluates object discovery and success rate.

Object discovery measures whether the system correctly localizes the target.

Results. We categorize 100 samples into two groups: Ambiguous (60) and Non-

Ambiguous (40). The Ambiguous group is a set of samples that require distin-

guishing between two objects given an initial instruction. The Non-Ambiguous

group corresponds to the remaining samples. In Table 4.5, PROGrasp achieves

a total execution success rate of 50%, outperforming all baselines. It demon-

strates that the superiority of PROGrasp’s target object discovery is success-

fully transferred to the success rate. Not surprisingly, PROGrasp is effective

in the Ambiguous, boosting success rate of 23% compared with SilentGrasp.

However, we observe many failure cases, although the target object is correctly

localized. The system often drops the objects during lifting or fails to grasp

them since objects are highly unstructured (see Figure 4.3). More precise ob-

ject grasping will mitigate this issue. We leave it as a future work.
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Figure 4.6: Visualization of PROGrasp’s target object recovery.

Figure 4.7: Visualization of the failure cases.

4.5.3 Qualitative Analysis

Results. In Figure 4.6, we visualize the inferred results from PROGrasp when

T = 2. PROGrasp fails to find the target object (i.e., a pink candle) in the first

round of the dialogue. Still, it corrects the target in the second round by utiliz-

ing the question-and-answer pair from the first round as additional context and

includes the target object as a candidate. Pragmatic inference finally selects

the desired object region. This example clearly explains the performance gap

between T = 1 and T = 2 in Figure 4.5. We also visualize two failure exam-

ples from the test-cluttered and test-unseen splits in Figure 4.7. The red and

green boxes indicate the predicted and ground-truth regions, respectively. As

61



in (a) at Figure 4.7, our system fails to identify the target region accurately

due to the occlusion, which explains low scores in Acc@0.9 of the test-cluttered.

Furthermore, PROGrasp sometimes makes an incorrect guess (i.e., (b) in Fig-

ure 4.7) when observing never-seen-before objects, highlighting the need for

further generalization in future work.

4.6 Conclusion

We propose a new task scenario for interactive object grasping called Pragmatic-

IOG to study the pragmatic reasoning behavior of embodied language agents.

Furthermore, we introduce a modular approach for Pragmatic-IOG called prag-

matic object grasping (PROGrasp), consisting of five components: visual ground-

ing, question generation, answer interpretation, object grasping, and pragmatic

inference. Experiments demonstrate that PROGrasp effectively reasons about

underspecified instructions and disambiguates the target object through dia-

logue with humans. Moreover, PROGrasp outperforms several compared meth-

ods in online experiments (i.e., IOG with a physical robot arm). We believe

our proposed task setup and the robotic system to open the door to developing

intelligent agents with pragmatic reasoning abilities.
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Chapter 5

Learning Robotic Skills from
Natural Language

5.1 Introduction

Advances in artificial intelligence and robotics accelerate the development of

robots that can follow natural language instructions. Studies on robotic manip-

ulation have developed such robots by training language-conditioned policies

through imitation learning [Stepputtis et al., 2020, Jang et al., 2022, Mees

et al., 2022, Brohan et al., 2022, 2023, Padalkar et al., 2023]. However, imita-

tion learning involves robot demonstration data, and collecting demonstrations

often requires expertise in robot control or access to specialized devices, such

as teleoperation or virtual reality systems [Xiao et al., 2023, Fu et al., 2024,

Seo et al., 2023]. This barrier severely limits the accessibility and scalability of

robot data collection, reducing the potential diversity of data and the ability to

collect demonstrations at scale. We thus ask: how can non-experts train robotic

policies without relying on specialized expertise or devices for collecting data?
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Figure 5.1: Overview of language-based teleoperation.

We explore a method for training robotic manipulation skills solely through

natural language, leveraging it as an intuitive and accessible interface for robot

learning. To this end, we first propose a data collection framework that allows

non-experts to collect in-domain robot data from natural language supervi-

sion. The framework consists of two components: language-based teleoperation

and stochastic trajectory diversification (STD). Figure 5.1 illustrates language-

based teleoperation in which a human collects data for a skill described in the

instruction (e.g., “pour the dog food into the bowl”). The human provides nat-

ural language supervision (e.g., “move left a lot”) in each state. Our framework

employs large language models (LLMs) [OpenAI, 2023a] to translate this super-

vision into appropriate robotic actions, which are then executed by the robot.

By repeating this process, robot demonstrations paired with instructions be-

come available. However, this process requires the user’s language supervision,

making it costly to collect large-scale robotic data. Thus, our framework auto-

matically augments existing demonstration data using STD. Specifically, STD

treats demonstration trajectories collected by humans as near-optimal and it-

eratively samples alternative trajectories. During sampling, it also makes the

robot deviate from the points within these trajectories. A simple heuristic algo-

rithm labels how robots should behave at each point. Consequently, STD scales
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human-collected robotic data by an order of magnitude, allowing cost-effective

training with as few as 10 episodes of human supervision per task.

We introduce a model that learns language-conditioned policies from natu-

ral language supervision, which we call CLIP-RT (CLIP-based Robotics Trans-

former). Our model extends CLIP [Radford et al., 2021], which uses language

as a training signal for visual representations, to robot learning for generalist

manipulation policies. A key idea is to introduce natural language itself as a

supervision to train robotic policies. CLIP-RT employs CLIP models trained

on Internet-scale data [Schuhmann et al., 2022, Fang et al., 2023] and adapts

them to predict actions specified in a language based on contrastive imitation

learning. Specifically, our model learns to measure the pairwise similarity be-

tween language supervision and contextual information (i.e., current scene and

language instruction) for language-conditioned policies. It is in stark contrast to

existing approaches [Brohan et al., 2023, Padalkar et al., 2023, Belkhale et al.,

2024, Kim et al., 2024] in two aspects: (1) CLIP-RT does not need to specify

tokens to encode actions since actions are represented in natural language and

(2) our model is discriminative rather than generative when predicting robotic

actions. We train CLIP-RT via a two-step process: robot action pretraining

and in-domain skill acquisition. In the pretraining stage, we train our model

on the large-scale robot learning dataset (i.e., Open X-Embodiment [Padalkar

et al., 2023]) to improve generalization capabilities. Since the dataset does not

contain natural language supervision, we transform existing low-level actions

into natural language supervisions to train CLIP-RT. Next, CLIP-RT learns

the desired skills using our collected in-domain data.

Our contributions are fourfold. First, we propose CLIP-RT, a vision-language-

action (VLA) model that learns language-conditioned policies from natural lan-

guage supervision. Second, we propose a data collection framework that enables
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non-experts to collect robot data only through natural language and expand the

size of the human-collected data through the automatic data collection method.

Third, we demonstrate that CLIP-RT outperforms the state-of-the-art model,

OpenVLA [Kim et al., 2024], by 17% in average success rates in 10 novel ma-

nipulation tasks. Fourth, our ablation studies reveal two key findings: (1) the

CLIP model favors natural language supervision over existing action encoding

strategies, significantly boosting task success rates, and (2) STD proves effective

when human-collected robot demonstration data are scarce.

5.2 Related Work

5.2.1 Collection of Real-World Robot Data

Data collection has become an increasingly important challenge in robot learn-

ing. Previous works have collected real-world robot demonstrations through var-

ious interfaces, such as teleoperation devices [Fu et al., 2024, Abbeel et al., 2010,

Hristov and Ramamoorthy, 2021], virtual reality (VR) [Zhang et al., 2018, Seo

et al., 2023], and kinesthetic teaching [Billard et al., 2006, Maeda et al., 2017,

Eteke et al., 2020, Yang et al., 2023]. Some studies introduce natural language

interfaces [Liu et al., 2023, Belkhale et al., 2024] for data collection, but they

are often used in limited scenarios. RT-H [Belkhale et al., 2024] and OLAF [Liu

et al., 2023] first train robotic policies using data collected from other interfaces

(e.g., VR). During deployment, humans provide language feedback to correct

robotic behaviors and policies are updated based on this feedback. In other

words, these approaches focus on refining learned policies on existing skills.

In contrast, our focus is on using language as an interface to obtain complete

demonstration trajectories for learning any desired skills. To achieve this, our

framework leverages the in-context learning capabilities of large language mod-

els (LLMs) [He et al., 2024] for translation from language to action.
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5.2.2 Language-Conditioned Robotic Policies

The research community has made extensive efforts to develop robotic systems

that can follow language instructions [Kollar et al., 2010, Chen and Mooney,

2011, Thomason et al., 2020, Kim et al., 2023, Kang et al., 2024a], often

training language-conditioned policies [Stepputtis et al., 2020, Lynch and Ser-

manet, 2020, Shridhar et al., 2022, Jang et al., 2022, Mees et al., 2022, Brohan

et al., 2022, 2023, Kim et al., 2024, Belkhale et al., 2024]. We train language-

conditioned policies through imitation learning similar to existing studies. Un-

like existing studies, we train language-conditioned policies with contrastive

imitation learning, which combines the ideas of contrastive learning [Radford

et al., 2021] with imitation learning [Pomerleau, 1988] for more discriminative

representations of robotic behaviors.

5.2.3 Vision-Language-Action (VLA) Models

Vision-language models (VLM) trained on Internet-scale data have been ex-

tensively studied for robotics, such as high-level planning [Driess et al., 2023,

Hu et al., 2023], success detection [Du et al., 2023], physical reasoning [Gao

et al., 2023], and robotic control [Shridhar et al., 2022]. In particular, a line of

research [Brohan et al., 2023, Padalkar et al., 2023, Belkhale et al., 2024, Kim

et al., 2024] has directly fine-tuned VLMs to predict robotic actions without

any new parameters. This category of models is called vision-language-action

(VLA) models. CLIP-RT falls into the category of VLA models. Current VLA

models consider robotic action as a foreign language and encode it in the same

way as a natural language. Specifically, each action is discretized and mapped

to existing tokens that are the least used in the vocabulary. Thus, VLA mod-

els do not require additional parameters to encode actions. However, CLIP-RT

learns to predict actions specified in natural language (e.g., “move left”), so it
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does not overwrite existing text tokens to represent robotic actions. We discuss

the effect of natural language-based action encoding in experiments.

5.3 Approach

5.3.1 Preliminaries

Language-Conditioned Imitation Learning. A dataset D = {(τn, ℓn)}Nn=1

consists of demonstrations τ paired with language instructions ℓ. Each demon-

stration contains a sequence of visual observations and expert actions τn =

{(v1, a1), . . . , (v|τn|, a|τn|)}. The goal of language-conditioned imitation learning

is minimizing the negative log-likelihood of the expert action at given the ob-

servation history v1:t = (v1, . . . , vt) and language instruction ℓ:

LIL = −E(τ,ℓ)∼D

 |τ |∑
t=1

log πθ(at|v1:t, ℓ)

 (5.1)

where πθ denotes the policy model with model parameters θ. For vision-language

action (VLA) models, θ is initialized from the parameters of vision-language

models (VLMs). To maintain consistency with the pre-training setup of VLMs,

existing VLA models [Brohan et al., 2023, Kim et al., 2024, Belkhale et al.,

2024] typically use single-image observations vt rather than utilizing the full

observation history v1:t. CLIP-RT follows this same approach. At test time, the

policy model performs closed-loop robot control until it completes instructions.

End-Effector Actions. The seven degrees of freedom (7-DoF) end-effector

action, which enables a robotic arm to control the movement and orientation

of its end-effector within the Cartesian coordinate system, is commonly used in

robotic manipulation tasks. The action is defined as:

at ≜ (∆posx, ∆posy, ∆posz, ∆rotx, ∆roty, ∆rotz, gripper) ∈ R7
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where all positional (pos) and rotational (rot) displacements along the x, y,

and z axes are represented as delta values. The gripper controls the opening of

the gripper, ranging from 0 (closed) to 1 (open). Policy models typically predict

the seven-dimensional action at each state. In contrast, CLIP-RT learns to pre-

dict language actions, which can then be translated into end-effector actions.

End-effector actions are finally converted into joint angles through inverse kine-

matics (IK), which maps a desired position and orientation in Cartesian space

back to the joint configuration needed to achieve that position.

Contrastive Language-Image Pretraining (CLIP). CLIP [Radford et al.,

2021] is a method for learning visual representations from natural language

supervision at scale. By employing the contrastive objective, CLIP trains an

image encoder f(·) and a text encoder g(·) on 400M image-text pairs. Given

a mini-batch of M image-text pairs {(Ii, Ti)}Mi=1, the two encoders are jointly

optimized to maximize the similarity between correct pairs of image and text

(Ii, Ti) while minimizing the similarity for incorrect pairs (Ii, Tj ̸=i):

LCL = − 1

2M

M∑
i=1

log
exp(xi · yi)∑M
j=1 exp(xi · yj)︸ ︷︷ ︸

image→text softmax

+log
exp(xi · yi)∑M
j=1 exp(xj · yi)︸ ︷︷ ︸

text→image softmax

 (5.2)

where xi = f(Ii)
∥f(Ii)∥2 and yi = g(Ti)

∥g(Ti)∥2 are normalized vector embeddings for

image and text, respectively. The pairwise similarity is defined as dot product

of these two embeddings, equivalent to the cosine similarity. Note that each

pairwise similarity is independently normalized by two softmax functions: one

over all texts for each image (i.e., image→ text softmax) and vice versa (i.e.,

text→ image softmax). As we describe later, we modify the contrastive loss to

make CLIP-RT compatible with language-conditioned imitation learning.
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Figure 5.2: Overview of CLIP-RT. In practice, we add a simple text prompt to
language instructions: What motion should the robot arm perform to complete
the instruction {instruction}?

5.3.2 CLIP-based Robotics Transformer (CLIP-RT)

In this subsection, we introduce CLIP-RT, a new vision-language-action model

that learns language-conditioned robotic policies from natural language super-

vision. We first provide an overview of natural language supervision and then

describe how CLIP-RT learns robotic policies from this supervision. Finally, we

describe our model’s closed-loop robot control at test time.

Natural Language Supervision. Inspired by CLIP [Radford et al., 2021]

that appreciates natural language as a training signal, we build an analogous

model to learn language-conditioned policies from natural language supervision.

We define natural language supervision as language-based direction that guides

robots on how to behave in specific states to complete given instructions. This

typically involves altering the robot’s position, rotation, or gripper state. As we

discuss later, each language supervision is associated with a specific low-level

expert action, and this information is used to identify language supervisions

that are semantically interchangeable. Robot learning from natural language

supervision has several merits. It establishes a clear hierarchy between initial
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instruction and language supervision, enabling models to learn shared structures

across diverse tasks [Belkhale et al., 2024]. Moreover, since language supervision

does not rely on specific action formats (e.g., 7D end-effector commands), the

same supervision can be used across different robot embodiments with varying

hardware and control systems.

VLM Backbone. CLIP-RT maintains the original CLIP model architecture

without any new parameters. We employ an open-source CLIP model1 [Fang

et al., 2023, Ilharco et al., 2021] of 1B parameters that achieves state-of-the-

art performance in zero-shot image classification [Russakovsky et al., 2015]. It

consists of an image encoder [Dosovitskiy et al., 2021] and a text encoder [Rad-

ford et al., 2019], both built on a Transformer architecture [Vaswani et al., 2017].

Contrastive Imitation Learning (CIL). We describe contrastive imitation

learning in Figure 2. CLIP-RT takes a mini-batch of M triplets {(vi, ℓi, ui)}Mi=1,

where v, ℓ, and u denote image observation, instruction, and language supervi-

sion. Contrastive imitation learning aims to optimize the pairwise similarities

in the set {((vi, ℓi), uj)|i, j ∈ {1, . . . ,M}}. Specifically, CLIP-RT first extracts

vector embeddings of vi, ℓi and uj using the CLIP model’s image encoder f(·)

and the text encoder g(·), and subsequently combines the image and instruction

embeddings:

ci = f(vi) + g(ℓi), zj = g(uj) (5.3)

where ci represents the context that encapsulates the robot’s current visual

state and its explicit goal. zj represents the immediate action that should be

1https://github.com/mlfoundations/open_clip
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taken given the context. We design the loss function as:

LCIL = − 1

M2

M∑
i=1

M∑
j=1

[
yij log σ(ĉi · ẑj) + (1− yij) log(1− σ(ĉi · ẑj))

]
(5.4)

where ĉi = ci
∥ci∥2 and ẑj =

zj
∥zj∥2 are normalized vector embeddings of ci and

zj . σ(·) is a sigmoid activation function, and yij ∈ {0, 1} denotes a label for the

pairwise similarity. The loss function maximizes the cosine similarity between

the context and language supervision for positive pairs, while minimizing it

for negative pairs. The label yij is basically one if i = j; otherwise, it is zero.

In other words, ((vi, ℓi), ui) are positive pairs, and ((vi, ℓi), uj ̸=i) are negative

pairs. However, due to the limited number of language supervisions, the mini-

batch often contains semantically interchangeable supervisions, such as “move

upwards” and “raise the arm”. Thus, CIL consults low-level actions ai associ-

ated with language supervision ui and treats the pair ((vi, ℓi), uj ̸=i) as positive

if two supervisions share the same low-level action. As a result, yij is one if

i = j or ai = aj (see the blue boxes in Figure 2); otherwise, it is zero. Conse-

quently, CLIP-RT learns to measure the likelihood of each motion described in

language, given visual observation and language instruction.

Robot-Action Pretraining. We train CLIP-RT on the Open X-Embodiment

dataset [Padalkar et al., 2023], an open large-scale dataset for robot learning.

The data set includes 2.4M robotic trajectories from 70 individual data sets.

Recent work [Kim et al., 2024] has made a significant effort in data curation,

so we use the curated data for training. However, the data do not contain nat-

ural language supervision. We thus synthesize it from end-effector actions. As

described in Section 5.3.1, the end-effector action is represented as a seven-

dimensional tuple consisting of the delta positions, the delta rotations, and the

gripper action to open or close. We identify the entry with the maximum value
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and its corresponding axis for each action. This information is mapped to one

of 50 predefined natural language supervisions (see Figure 5.3). To increase the

diversity of natural language supervision, we use large language models (LLMs)

to paraphrase the original supervisions. As a result, we train CLIP-RT on ap-

proximately 18.1M instances with 899 different natural language supervisions

through contrastive imitation learning. It requires four H100 GPUs for one day

with a batch size of 128.

1. move arm back by 20cm
2. move arm back by 10cm
3. move arm back by 5cm
4. move arm back by 1cm
5. move arm forward by 1cm
6. move arm forward by 5cm
7. move arm forward by 10cm
8. move arm forward by 20cm
9. move arm to the right by 20cm

10. move arm to the right by 10cm
11. move arm to the right by 5cm
12. move arm to the right by 1cm
13. move arm to the left by 1cm
14. move arm to the left by 5cm
15. move arm to the left by 10cm
16. move arm to the left by 20cm
17. lower arm by 20cm
18. lower arm by 10cm
19. lower arm by 5cm
20. lower arm by 1cm
21. raise arm up by 1cm
22. raise arm up by 5cm
23. raise arm up by 10cm
24. raise arm up by 20cm
25. roll arm 90 degrees counterclockwise
26. roll arm 45 degrees counterclockwise
27. roll arm 15 degrees counterclockwise
28. roll arm 5 degrees counterclockwise
29. roll arm 5 degrees clockwise
30. roll arm 15 degrees clockwise
31. roll arm 45 degrees clockwise
32. roll arm 90 degrees clockwise
33. tilt arm up 90 degrees
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34. tilt arm up 45 degrees
35. tilt arm up 15 degrees
36. tilt arm up 5 degrees
37. tilt arm down 5 degrees
38. tilt arm down 15 degrees
39. tilt arm down 45 degrees
40. tilt arm down 90 degrees
41. yaw arm 90 degrees counterclockwise
42. yaw arm 45 degrees counterclockwise
43. yaw arm 15 degrees counterclockwise
44. yaw arm 5 degrees counterclockwise
45. yaw arm 5 degrees clockwise
46. yaw arm 15 degrees clockwise
47. yaw arm 45 degrees clockwise
48. yaw arm 90 degrees clockwise
49. close gripper
50. open gripper

Figure 5.3: A list of predefined natural language supervisions.

Closed-Loop Robot Control. An overview of closed-loop robot control is

shown in Figure 5.2. At each time step, CLIP-RT infers pairwise similarities be-

tween context information and K action classes that describe robotic behaviors

in the language. Our model selects the language action with the maximum prob-

ability. Finally, the language action is translated into the lower-level end-effector

commands based on a pre-defined lookup table. Unlike other Transformer-based

policy models [Brohan et al., 2023, 2022, Padalkar et al., 2023, Belkhale et al.,

2024, Kim et al., 2024] relying on autoregressive decoding, CLIP-RT can pre-

dict action in a single forward pass since it is a discriminative model. CLIP-RT

requires 7GB of GPU memory and runs at 16Hz (one H100 GPU using float32

precision) and 8Hz (one NVIDIA RTX 3090 GPU using float32 precision) with-

out applying any speed-up tricks, such as model quantization and compilation.
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5.3.3 In-Domain Robot Data Collection

In this subsection, we describe how we can collect robotic data solely through

natural language. We introduce our data collection framework consisting of two

steps: (1) language-based teleoperation and (2) stochastic trajectory diversifi-

cation (STD) which augments demonstrations collected from the first step.

Language-based Teleoperation. This step aims to collect a set of tuples

containing visual observation, initial instruction, natural language supervision,

and low-level action. To this end, we design a scenario in which users collect

such data by interacting with large language models (LLMs) [OpenAI, 2023a].

Specifically, users first provide an initial language instruction for a skill. Then,

they provide natural language supervisions in specific states to complete the

instruction. LLMs finally translate the language supervision into the low-level

end-effector command based on a detailed text prompt (see Figure 5.4). The

prompt outlines information about (1) input and output space, (2) the 3D

Cartesian coordinate system of the environment, and (3) input-output samples

for in-context learning. We collect 10 episodes for each skill through this process.

Stochastic Trajectory Diversification (STD) aims to augment demonstra-

tion data collected from language-based teleoperation. Before delving into the

details, we first define a waypoint as a special state in demonstrations that sat-

isfies either of the following conditions: (1) the gripper state changes (i.e., open

→ close and close → open) or (2) the cumulative progress of delta positions

or orientations (see Section 5.3.1) along any axis reverses. For example, w1 in

Figure 5.5-(a) is a waypoint since the cumulative progress on a horizontal axis

starts to reverse at w1.
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Figure 5.4: A text prompt for language-based teleoperation.

76



Figure 5.5: A simplified 2D example of stochastic trajectory diversification. (a):
a demonstration trajectory from the start s to the endpoint e, passing through
a waypoint w1. (b): a sampled trajectory generated by the diversification phase.
(c)-(e): a visualization of the recovery phase.

STD consists of two phases the diversification phase and the recovery phase.

The diversification phase first builds alternative trajectories toward each way-

point (see Figure 5.5-(b)) by composing a new action sequence from the action

list shown in Figure 5.3. The robot then performs each action in the sequence,

recording an image at each visited state. This process repeats until the robot

completes the task. As a result, the diversification enriches the robot’s under-

standing of how to act in various states leading toward the waypoint.

In the recovery phase, the robot intentionally visits states deviating from

the planned trajectory (see Figure 5.5-(d)) and then executes a recovery action,

a simple reversal of the deviation to return to the trajectory (see Figure 5.5-

(e)). This deviate-then-recover process occurs within K = 3 time steps to reach

the waypoint, allowing the robot to handle errors near the waypoint. Note that

the robot records only the recovery actions and images at the deviated states,

not the deviation data itself. As a consequence, CLIP-RT can learn various

alternative actions and how to behave at the deviated points.
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5.4 Experimental Setup

We train and evaluate our models across 19 robotic manipulation tasks which

are categorized into two groups: Common and Novel. Common tasks consist of

nine tasks that are closely aligned with those found in the Open X-Embodiment

dataset [Padalkar et al., 2023], such as “pick the banana”. In contrast, Novel

tasks consist of ten tasks barely observed during pretraining, serving as a

testbed to evaluate the models’ ability to acquire new skills based solely on

in-domain data. In the following, we describe each robotic task.

5.4.1 Common Tasks

1. Point: The robot is expected to move its arm close to the object (e.g., cups

with different colors, dice).

Figure 5.6: An example of a task with “point to the blue cup”.

2. Pull: The robot is required to pull out the tissue from the tissue box.

Figure 5.7: An example of a task with “pull out the tissue”.

3. Place: The robot is required to place an object at a designated location

(e.g., in colored boxes or on a shape such as a star and circle). The task

begins while the robot grasping the object.
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Figure 5.8: An example of a task with “place the green cup on the red box”.

4. Pick: The robot is expected to find and grasp the object. The target objects

include cups, dice, and stamps, as well as bananas.

Figure 5.9: An example of a task with “pick up the banana”.

5. Push: The robot is required to move a arm in front of the <obj1> (e.g., a

dice, box, or cup) and push the object to move it toward another <obj2>.

Figure 5.10: An example of a task with “push the red dice to the blue dice”.

6. Flip: The robot is required to locate and grasp the object (e.g., cups or

plates), lift it, and flip it over by rotating the gripper.

Figure 5.11: An example of a task with “flip the yellow cup”.
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7. Knock Over: The robot is required to locate and grasp the object (e.g.,

cups), tilt the object and open the gripper to knock the object over.

Figure 5.12: An example of a task with “knock over the blue cup”.

8. Slide: The robot is expected to grasp the object (e.g., dice, toy car), and

slide it towards another object (e.g., Pooh, Piglet, or a board eraser).

Figure 5.13: An example of a task with “slide the green car to the Piglet”.

9. Move: The robot is required to pick up the object (e.g., banana, cups, plate)

and place it to the desired location (e.g. near or on another object).

Figure 5.14: An example of a task with “move the blue cup on the yellow circle”.
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5.4.2 Novel Tasks

1. Pour the Dog Food: The robot starts by holding a blue shovel filled with

dog food. The robot has to locate the silver bowl, and tilt its arm to pour

the dog food into the bowl.

Figure 5.15: An example of a task with “pour the dog food in the bowl”.

2. Draw a Line: The task starts with grasping a board marker. The robot

should draw a line that meets the specified condition, such as drawing the

line vertically or horizontally, from one object to another.

Figure 5.16: An example of a task with “draw a line from A to B”.

3. Open the Cabinet: The robot is required to pick up the lid of the cabinet

by adjusting the pose of the arm.

Figure 5.17: An example of a task with “open the cabinet”.

4. Play with the Car: The toy car is a pull-back car, so the robot is required

to grasp the toy car, move it backward, and open the gripper.
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Figure 5.18: An example of a task with “play with the car”.

5. Erase the Whiteboard: The robot is required to grasp the eraser and

scrub it over the doodles.

Figure 5.19: An example of a task with “erase the whiteboard”.

6. Close the Laptop: The robot is expected to close the laptop.

Figure 5.20: An example of a task with “close the laptop”.

7. Open the Trashcan: The robot is required to approach the trashcan, pre-

cisely press the lid downward, and lift its arm to open it.

Figure 5.21: An example of a task with “open the trashcan”.

8. Stamp: The robot is required to grasp the stamp, and precisely apply it at
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the specified position (e.g., next to <obj>, on <obj>, or between <obj1> and

<obj2>).

Figure 5.22: An example of a task with “stamp next to the star”.

9. Hide: The robot should grasp the cup, flip it upside-down, and place it over

the object, ensuring the cup is positioned correctly to hide the object. The

cup may start upside-down from the beginning, and the object to hide could

be a toy like Piglet, Pooh, or a small block.

Figure 5.23: An example of a task with “hide the Pooh with the green cup”.

10. Hang the Cup: The robot is expected to grasp the cup with a handle and

precisely hang it on the hanger.

Figure 5.24: An example of a task with “hang the cup”.

5.4.3 Data

For each task — both Common and Novel — humans collect 10 episodes per

task through interacting with LLMs. This results in 911 instances for Common
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tasks and 1276 instances for Novel tasks. Leveraging stochastic trajectory diver-

sification (STD), we augment 3 additional trajectories for each episode across

all tasks. We get 9,841 instances for Common tasks and 11,578 for Novel tasks.

In total, we use 23k in-domain data to train models, and all compared models

are trained on the data unless stated otherwise.

5.4.4 Compared Methods

We compare CLIP-RT with several baselines, including ablated versions of our

model to evaluate the impact of each component. CLIP-RT is our proposed

model pretrained on the Open X-Embodiment dataset [Padalkar et al., 2023]

and further fine-tuned using data collected via Section 5.3.3. OpenVLA [Kim

et al., 2024] is an open-source, state-of-the-art Vision-Language-Action (VLA)

model; it integrates the Llama2 language model [Touvron et al., 2023] with

visual features from DINOv2 [Oquab et al., 2023] and SigLIP [Zhai et al., 2023],

using an end-to-end approach where actions are treated as language tokens

within the vision-language model [Karamcheti et al., 2024]. Note that we also

finetune OpenVLA on the same in-domain data as CLIP-RT through low-rank

adaptation [Hu et al., 2021]. CLIP-RT-Action is a variant of CLIP-RT where

actions are mapped to specific text tokens similar to existing VLA models [Kim

et al., 2024, Brohan et al., 2023, 2022, Padalkar et al., 2023]. We can identify the

effect of actions represented in natural language. CLIP-RT-Passive is another

ablated version of CLIP-RT without stochastic trajectory diversification (STD),

relying solely on human-collected demonstrations to investigate the effect of

STD. Finally, CLIP-RT-Zero is also an ablation model trained only on the

Open X-Embodiment dataset [Padalkar et al., 2023], without accessing any

in-domain data.
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Figure 5.25: A robotic platform used in the experiments.

5.4.5 Robotic Platform

We perform experiments using a physical robot arm, 6-DoF Universal Robots

(UR5) with a two-finger gripper. All episodes begin from a standardized home

pose, as shown in Figure 5.25, and objects are placed within the white area,

ensuring they are within the robot’s reachable workspace. For visual input, we

utilize the Azure Kinect DK, which provides an RGB image of the scene. The

camera position remains fixed throughout all experiments, positioned to the

left and slightly behind the robot arm to ensure consistent visual perspectives

across tasks.

5.5 Results and Discussions

We evaluated the performance of CLIP-RT and compared it with OpenVLA

and several ablated variants of CLIP-RT. The results are presented for Com-

mon Tasks (Figure 5.26 top) and Novel Tasks (Figure 5.26 bottom). The ex-

perimental results demonstrate that CLIP-RT outperforms OpenVLA in both

Common and Novel tasks, with a particularly significant improvement in Novel
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tasks, where CLIP-RT achieves an average success rate of 40% compared to

OpenVLA’s 23%. In Common tasks, CLIP-RT attains the highest average suc-

cess rate of 54%, slightly surpassing OpenVLA’s 51%, while ablated models

exhibit lower performance.

5.5.1 Comparison with State-of-the-Art

Performance on Common vs. Novel Tasks. CLIP-RT demonstrates ro-

bust performance on both Common and Novel tasks, while OpenVLA exhibits

a more pronounced decline in Novel tasks. Specifically, CLIP-RT maintains a

high success rate in Common tasks and shows superior generalization capabili-

ties in Novel tasks, outperforming OpenVLA by 17% on average in the latter.

This suggests that CLIP-RT’s architecture and training method take advantage

of handling tasks previously unseen in the pre-training stage. We observe that

the enhanced generalization of CLIP-RT can be attributed to its use of natural

language supervision for learning actions. By representing actions in natural

language, CLIP-RT leverages the abstract and high-level reasoning encoded

in language-based representations. This facilitates better comprehension and

execution of complex tasks, particularly those that are not encountered during

pre-training. For further details, please see the ablation studies presented below.

Task-wise Performance Analysis. A detailed comparison of individual Com-

mon tasks reveals differences between CLIP-RT and OpenVLA. In relatively

simpler tasks, such as Point, Pull, Place, Pick, and Push, both models perform

comparably, with OpenVLA slightly outperforming CLIP-RT. This suggests

that for tasks requiring straightforward action mappings, OpenVLA is effec-

tive. However, in more challenging tasks such as Flip, Knock Over, and Slide,

CLIP-RT significantly outperforms OpenVLA. These tasks require a higher
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level of reasoning, such as determining whether an object is upside down (Flip)

or whether the cup is sufficiently tilted (Knock Over). We conjecture that CLIP-

RT excels in these scenarios due to its discriminative approach, which involves

selecting actions by directly matching the natural language representation of the

desired action with the current context. This method allows CLIP-RT to lever-

age rich semantic information from both language and visual input, enabling

nuanced decision-making in complex tasks. Conversely, OpenVLA’s generative

approach to action prediction may introduce errors in complex tasks, as gener-

ating precise actions becomes more challenging with increased task complexity.

5.5.2 Ablation Studies

We conducted an ablation study to assess the contributions of different compo-

nents of CLIP-RT by comparing it with its variants: CLIP-RT-Action, CLIP-

RT-Passive, and CLIP-RT-Zero.

Effect of Language-based Action Prediction. We compare CLIP-RT with

CLIP-RT-Action to identify the effect of learning actions represented in natu-

ral language. As shown in Figure 5.26, CLIP-RT outperforms CLIP-RT-Action

on both Common and Novel tasks by a significant margin. This indicates that

representing actions in natural language, as in CLIP-RT, yields better results

by leveraging the language priors in pre-trained vision-language models (i.e.,

CLIP). Furthermore, it is worth noticing that the performance gap between the

two models in Novel tasks (17%) is larger than that of Common tasks (11%).

This result shows that learning language actions enhances the model’s general-

ization capabilities.

Impact of Stochastic Trajectory Diversification. CLIP-RT-Passive, which
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omits stochastic trajectory diversification (STD), struggles in most tasks, high-

lighting the critical role of STD in model performance. STD enables the model

to learn from diverse possible trajectories, enhancing its robustness and gen-

eralization capabilities. By exploring deviations from optimal trajectories, the

model becomes adept at recovering from nonoptimal states and adapting to

unexpected variations in the robot’s position. The absence of STD in CLIP-

RT-Passive results in depending on a fewer number of training data, reducing

its adaptability and effectiveness.

5.6 Conclusion

This paper presents CLIP-RT, enabling non-experts to teach robots new ma-

nipulation skills using human language. By learning actions through the user’s

natural language supervisions and stochastic trajectory diversification, CLIP-

RT leverages pretrained vision-language models to effectively generalize to novel

tasks. Experiments show that CLIP-RT outperforms the state-of-the-art Open-

VLA by 17%, demonstrating the potential of natural language supervision for

accessible and versatile robot learning. We believe that our work represents

a valuable step towards making robot learning more accessible and scalable,

allowing everyday users to teach robots in diverse environments.
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Chapter 6

Concluding Remarks

6.1 Summary of Methods and Contributions

This dissertation discussed three key capabilities for embodied language agents

to perform real-world robotic tasks. First, we presented generative self-training

(GST) for visually-grounded communication to effectively leverage unlabeled

Web images. GST first retrieves in-domain images through out-of-distribution

detection and generates synthetic dialogs regarding the images via multimodal

conditional text generation. GST then trains a dialog agent on the synthetic

and the original visual dialog data. For robust training of the synthetic dialogs,

we also propose perplexity-based data selection and multimodal consistency

regularization. Evaluation on Visual Dialog v1.0 and v0.9 datasets shows that

GST achieves new state-of-the-art results on both datasets. We further observe

the robustness of GST against both visual and textual adversarial attacks.

Finally, GST yields strong performance gains in the low-data regime.

Second, we explored the capability of reasoning about underspecified in-
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structions for the robotic task. Inspired by pragmatics, where humans often

convey their intentions by relying on context to achieve goals, we first pre-

sented a new task setup for interactive object grasping (IOG), which we call

Pragmatic-IOG and the corresponding dataset. Then, we presented the mod-

ular approach for Pragmatic-IOG, the pragmatic object grasping (PROGrasp)

system. PROGrasp performs Pragmatic-IOG by incorporating modules for vi-

sual grounding, question asking, object grasping, and most importantly, answer

interpretation for pragmatic inference. Experimental results show that PRO-

Grasp is effective in offline (i.e., target object discovery) and online (i.e., IOG

with a physical robot arm) settings.

Third, we presented CLIP-based robotics transformer (CLIP-RT) to learn

robotic skills directly from natural language supervision. CLIP-RT seamlessly

extends the CLIP model [Radford et al., 2021] and learns to predict actions

represented in language via contrastive imitation learning. Furthermore, we

proposed a data collection framework that collects robot demonstrations based

on natural language supervision (e.g., “move the arm forward”) and further

augments these demonstrations. We first train CLIP-RT on large-scale robotic

data and then enable it to learn desired skills using data collected from our

framework. CLIP-RT shows strong capabilities in acquiring novel manipulation

skills, outperforming the state-of-the-art model, OpenVLA (7B parameters), by

17% in average success rates, while using 7x fewer parameters (1B).

This dissertation bridges the gap between interaction, reasoning, and con-

trol in embodied language agents. While existing research at the intersection of

natural language processing (NLP) and robotics (see Chapter 2) has advanced

individual capabilities in communication, reasoning, and control, these dimen-

sions are often addressed in isolation. This dissertation repositions interaction

not as a standalone capability but as a mechanism to facilitate deeper reason-
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ing and more effective action learning, addressing the complexities of real-world

human-robot collaboration.

The dissertation introduces a novel perspective by framing the challenge

through the dual lens of “learning for interaction” and “interaction for learn-

ing.” “Learning for interaction” focuses on how robots can acquire the desired

perceptual and reasoning capabilities to engage in effective and robust com-

munication with humans, as in Chapter 3, which focuses on visually-grounded

communication, and Chapter 4, which addresses reasoning about underspecified

instructions. Conversely, “interaction for learning” explores how robots leverage

interaction — in the form of natural language instructions, feedback, or demon-

strations — to acquire new skills and improve their ability to perform real-world

robotic tasks, as demonstrated in Chapter 5. By combining these perspectives,

this dissertation lays the groundwork for a unified framework where interaction

and learning mutually reinforce each other, enabling robots to adapt seamlessly

to complex and dynamic real-world tasks.

6.2 Suggestions for Future Research

6.2.1 Lifelong Learning

While this dissertation explored the communication, reasoning, and learning

capabilities of embodied language agents, these capabilities were addressed in-

dependently rather than interwoven into a cohesive framework. For example,

while reasoning about underspecified instructions (Chapter 4) interplays be-

tween visually-grounded communication and pragmatic reasoning, it did not

directly feed into the learning process to improve task performance over time.

Furthermore, learning robotic skills from natural language (Chapter 5) is at the

intersection of communication and action learning, but it did not account for

the interpretation of ambiguous or high-level commands (e.g., “move forward a
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bit”). In other words, this process lacks the integration of contextual or prag-

matic reasoning, limiting the robot’s ability to infer intent or adapt instructions

based on situational nuances. As a result, the system remains reliant on pre-

cise, low-level commands (e.g., “move forward 10cm”) that fail to capture the

complexity of real-world interactions.

Inspired by humans who continuously refine their understanding of the world

through experience, a promising direction for future research is the development

of lifelong learning systems that seamlessly integrate interaction and learning.

This would involve advances in continuous learning methods, such as modu-

lar or memory-based approaches [Guo et al., 2020, Suhr and Artzi, 2023], to

maintain a balance between stability (retaining past knowledge) and adapt-

ability (acquiring new knowledge without catastrophic forgetting [Kirkpatrick

et al., 2017, Lee et al., 2017]). By achieving this integration, embodied language

agents could dynamically evolve their interaction and learning capabilities to

address a wider array of tasks in diverse and changing environments, such as

adapting to unseen objects in robotic manipulation tasks or learning new forms

of collaborative behaviors.

6.2.2 Long-Horizon Task Execution

The robotic tasks addressed in this dissertation are relatively short-horizon

compared with the complexity and duration of everyday tasks, such as folding

laundry [Black et al., 2024] or delivering objects in indoor environments [LABS,

2023]. While CLIP-RT in Chapter 5 successfully demonstrates diverse manipu-

lation skills — such as opening the trash can and closing the laptop — extend-

ing these capabilities to long-horizon tasks requires novel approaches that can

handle increased task complexity.

One promising strategy for long-horizon task execution involves developing
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a high-level task planner [Huang et al., 2022a, Song et al., 2023, Shin et al.,

2024] that decomposes complex tasks into sequences of primitive skills. For ex-

ample, a task planner could break down “set the dinner table” into subtasks

like “retrieve plates,” “place utensils,” and “arrange napkins.” Integrating such

planners with CLIP-RT’s manipulation skills could enable embodied language

agents to execute structured, multi-step tasks. However, such a top-down ap-

proach might struggle with unstructured tasks, such as cleaning a cluttered

room, where objects and goals are not predefined, requiring adaptability and

on-the-fly decision-making.

A complementary strategy is incremental learning [Wu et al., 2019], where

agents progressively build a task hierarchy by combining previously learned

skills. For instance, an agent might learn how to “fold a towel” by first mastering

simpler actions like “grab towel edges” and “apply folding motion.” This bottom-

up approach leverages learned behaviors as building blocks for more complex

tasks, enabling adaptation to scenarios with poorly specified goals or dynamic

conditions, such as sorting laundry with unknown item categories. However,

this strategy may face challenges in maintaining global task coherence, such

as ensuring all folded towels are eventually placed in the laundry basket. This

highlights the need for a structured framework to guide overall task execution.

A hybrid strategy that combines the strengths of top-down planning and

bottom-up incremental learning offers a robust solution for long-horizon task

execution. By integrating a high-level task planner to provide structure and

global guidance while allowing incremental learning to refine and expand skills

locally, agents can dynamically adapt to diverse and evolving scenarios. In other

words, the task planner could outline a broad sequence of objectives, while in-

cremental learning enables fine-tuning and skill discovery within each objective.

This hybrid approach balances the stability and foresight of top-down methods
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with the adaptability of bottom-up strategies, creating a robust and scalable

framework for addressing complex, long-horizon robotic tasks.
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요약

인간의 자연어 지시를 이해하여 다양한 실세계 작업을 수행할 수 있는 지능형

에이전트의 개발은 인공지능의 오랜 목표이다. 기계 학습과 자연어 처리 기술의

발달로 이러한 에이전트의 역량이 크게 향상되어 언어를 의사소통, 추론 및 학습

의 수단으로 사용할 수 있게 되었다. 해당 역량을 보유한 에이전트를 흔히 언어

에이전트라고 한다. 이 논문은 물리적 환경에서 인간의 명령을 해석하고 로봇 작

업을 실행하는 체화된 언어 에이전트를 탐구한다. 이전 연구들 [Kang et al., 2023,

2024a,b]을 바탕으로 체화된 언어 에이전트의 세 가지 과제가 논의되며, 각 과제는

언어 에이전트의 핵심 역량을 기반으로 하며 다음과 같다: 1) 시각 기반 의사소통,

2) 구체화되지 않은 명령에 대한 추론, 3) 자연어를 통한 로봇 기술 학습.

시각기반의사소통은시지각에대해인간과효과적으로의사소통할수있도록

해주므로 체화된 언어 에이전트의 핵심 역량에 해당한다. 우리는 체화된 언어 에

이전트가 시각 기반 의사소통의 강건성과 일반화 기능을 향상시킬 수 있는 방법을

탐구한다. 이를 위해, 생성형 자가 학습이라는 준지도 학습 접근 방식을 소개한다.

생성형 자가 학습의 핵심 사상은 웹에 있는 방대한 양의 라벨이 없는 사진 데이

터를 기반으로 인공 시각 대화 데이터를 생성하고 이를 학습에 사용하는 것이다.

생성형자가학습은적대적강건성과학습시관측하지않은데이터에대한일반화

성능을 향상시켰다.

자연어는 본질적으로 모호하며 그 의미가 상황에 의존적인 특성을 가지고 있

다. 이에, 우리는 체화된 언어 에이전트가 “내 장치의 배터리는 부족하다”와 같은

구체화되지 않은 지시를 추론하고 인간-로봇 상호작용을 통해 원하는 객체 (예:

충전기)를 파지할 수 있는 방법을 논한다. 구체적으로, 제안 시스템은 시각적 장면

속의 목표 객체를 명확하게 하기 위해 인간에게 질문을 하며 인간의 답변을 기반

으로 여러 객체 후보에 대한 믿음을 계속적으로 갱신한다. 우리는 각 객체 후보가
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현재의시각적및대화맥락을얼마나잘설명하는지평가하는과정을화용론적추

론이라고 부른다. 실험 결과는 화용론적 추론이 구체화되지 않은 명령이 주어졌을

때 목표 객체 발견 및 객체 파지 작업 성공률을 향상시켰다.

세 번째 주제에서는 언어가 로봇 학습을 위한 인터페이스로 어떻게 활용될 수

있는지논의한다.목표는언어감독을통해서만언어조건부로봇정책을학습하는

것이다. 먼저 로봇 데이터 수집을 위한 언어 기반 원격 조작 시스템을 소개한다.

그다음자연어감독에서직접언어조건부정책들을학습하는시각-언어-행동모델

을 소개하며, 이를 클립 기반 로봇 트랜스포머라고 부른다. 자연어를 학습 신호로

사용하는 클립에서 영감을 얻은 클립 기반 로봇 트랜스포머는 이 사상을 로봇 학

습으로 확장한다. 구체적으로 클립 기반 로봇 트랜스포머는 인간의 언어 감독 (예:

“팔을 앞으로 움직여라”)을 로봇 정책에 대한 감독 정보로 취급하고 대조 학습을

통해 언어 감독과 로봇의 현재 상태 간의 벡터 유사성을 최적화하는 방법을 학습

한다. 클립 기반 로봇 트랜스포머는 새로운 로봇 기술을 학습하는 강력한 능력을

보여주며 이전 기술의 성능을 능가한다.

주요어:깊은학습,로봇학습,인간-로봇인터랙션,시각기반대화,화용론적추론,

언어 기반 정책 학습

학번: 2020-36496
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