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I. INTRODUCTION

Imagine a home robot, given the command: “Can you pour
me a drink?” If the robot has not learned to pour, how can we
teach it? If multiple options are available, how should the robot
decide which drink to pour? Recent work has made significant
progress toward generalist robotic policies [3, 4, 19, 1, 2] using
large-scale demonstration datasets [26, 17]. However, collect-
ing these demonstrations often requires expertise and access to
specialized equipment [8, 29, 33], limiting the accessibility and
scalability of robot learning. Moreover, robots often struggle
with ambiguity, as they lack the ability to interact and clarify
the user’s intent, making it difficult for them to make justified
decisions. These challenges severely limit their adaptability to
unstructured environments, hindering their real-world deploy-
ment. Consequently, methods that enable (1) a wider audience
(e.g., non-experts) to teach robots new behaviors and (2) robots
to resolve ambiguities through interaction are essential.

To address these challenges, my research leverages natu-
ral language as an interface for both robot learning and
human-robot interaction. I seek to advance three axes: (1)
enabling robots to learn visuomotor skills through language-
based supervision [14], making robot learning more accessible
and scalable, (2) facilitating robots to engage in dialogue
with humans to reason about the user’s intent for robotic
manipulation [13, 18], and (3) developing robust vision-
language models (VLMs) to build strong foundations for the
first two axes, ensuring effective integration of visual and
linguistic information for learning and interaction [12, 11, 10].
In the first axis, I propose a language-based teleoperation
method that enables non-experts to collect robot demonstra-
tions through natural language supervision. Then, I introduce
a vision-language-action (VLA) model that learns visuomotor
policies directly from language supervision. Unlike existing
VLA models [4, 26, 19, 1, 2] that output low-level robotic
actions, our model learns to predict actions in language,
such as “move the arm forward,” which demonstrates strong
capabilities in acquiring new skills with a few demonstrations.
In the second axis, I propose a new object-grasping task where
a user provides an ambiguous and underspecified instruction
(e.g., “I am thirsty”). Moreover, I present a robotic system that
aims to pick up one target object in the scene by interacting
with the user using language. In the third axis, I propose
several approaches for visually-grounded dialog [6].

II. APPROACH

A. Robot Learning from Natural Language Supervision
Large behavior models [4, 19, 24, 1, 2] trained on massive

amounts of demonstrations [26, 17] through imitation learning

Fig. 1. Overview of collecting robot data from natural language supervision.

have shown significant progress in robotic manipulation. How-
ever, these models, aimed at learning generalist manipulation
policies, struggle to rapidly expand their set of manipulation
skills for a wide range of real-world tasks. I suggest that
a major bottleneck lies in the limited accessibility of data
collection, as acquiring real-world robot data often requires
expertise in robot control [33] or access to specialized devices,
such as teleoperation [8] or virtual reality (VR) systems [30].

To address this, I developed language-based teleoperation,
a data collection method to teach robots manipulation skills
without relying on specialized expertise or devices for data
collection. Fig. 1 illustrates language-based teleoperation in
which a human collects data for a task based on the command
(e.g., “pour the dog food into the bowl”). The human first
provides natural language supervision (e.g., “move left a lot”)
in each state. The large language model (LLM) [25] then trans-
lates this supervision into appropriate robotic behavior, which
is ultimately executed by the robot. By repeating this process,
robot demonstrations are collected, where each state transition
is associated with corresponding language supervision.

I also proposed a vision-language-action (VLA) model that
learns visuomotor policies directly from language supervision.
A core idea is to leverage natural language as supervision to
train robotic policies, inspired by CLIP [27], which uses lan-
guage as a training signal for visual representations. Our model
employs CLIP models trained in Internet-scale data [28, 7]
and adapts them to predict language-based motion primitives
(e.g., “move the arm forward by 10cm”) through contrastive
learning. Specifically, our model learns to measure the pair-
wise similarity between language supervision and contextual
information (i.e., current scene and language command). We
train our model through a two-step process: pretraining and
in-domain fine-tuning. In the pretraining stage, we train our
model on the large-scale robot learning dataset (i.e., Open
X-Embodiment [26]) to improve generalization capabilities.
The dataset does not contain language supervision, so we
transform existing low-level robotic actions into templated
natural language supervision to train our model. During in-



domain fine-tuning, our model learns diverse robotic skills
using our collected data. Our proposed model outperforms
the state-of-the-art VLA model [19] by a significant margin
in acquiring novel manipulation skills, while using 7x fewer
parameters. We further demonstrated that our method excels at
few-shot generalization to novel tasks with a limited number
of demonstrations (≤ 5).

B. Human-Robot Interaction

I have worked on language-conditioned robot manipulation,
where robots manipulate objects based on natural language
instruction from humans. A typical scenario of this problem
involves specifying the category of the target object in instruc-
tion [31, 15, 35, 34, 21] (e.g., “Give me a bottle of water”).
However, in the same situation, humans often convey their
intentions by relying on context to achieve their goals (e.g.,“I
am thirsty.”). Inspired by this, I have introduced a new task
and corresponding dataset to study how robots can clarify
the user’s intent through interactions and perform context-
appropriate behaviors.

The task requires robots to pick up the desired object in the
given scene, but the language instructions are ambiguous and
underspecified (Fig. 2). Therefore, the agents should interact
with humans by asking questions to disambiguate the target
object. Based on the task setup, we propose a new robotic
system that effectively infers the user’s intention and picks up
the target object through dialogue. Our system continuously
updates its belief by evaluating how well each object candidate
in the scene aligns with the current visual and dialogue context,
a process we call pragmatic inference. Pragmatic inference
helps our system interpret the nuances of human language.
For instance, if a user says, “The smaller one,” the system
does not just consider size in isolation—it also takes context
into account. If the user previously referred to a specific
category of objects, the system infers that “the small one”
means the smallest object within that category, even if a
smaller object exists elsewhere in the scene. We showcase that
pragmatic inference helps identify the target object correctly
with minimal human-AI interaction.

C. Visually-Grounded Dialog

The research directions mentioned above require models
with a holistic understanding of visual perception and lin-
guistic semantics. Thus, I have developed a strong foundation
for language-driven robotics, particularly in the context of
visually-grounded dialog systems that can continuously com-
municate with humans about visual scenes. Most of the previ-
ous approaches [9, 22, 5] have trained such models solely on
human-collected visual dialog data [6] via supervised learning.
One critical problem is that human-to-human visual dialog is
hard to scale due to the need for extensive manual curation,
limiting the generalization and robustness of models. To this
end, I introduced a semi-supervised learning approach, called
Generative Self-Training (GST), to scale data without human
annotation. The key idea of GST is to generate synthetic dialog
data for unlabeled Web images and train models on the data.

Fig. 2. Overview of interactive object grasping with an ambiguous instruc-
tion. The instruction does not contain the target object’s category.

I have shown that synthetic data leads to significant gains in
generalization performance. Moreover, our method enhances
robustness against visual and linguistic adversarial attacks.

I have also tackled visual reference resolution, where vi-
sually grounded language models should resolve ambiguous
expressions in human utterances (e.g., “What color is it?”)
and ground them to a given image. I have proposed attention-
based methods that effectively retrieve relevant dialog history
to clarify ambiguous expressions. They have demonstrated
their efficacy compared to prior approaches [20, 23].

III. FUTURE DIRECTIONS

A. Compositional Generalization for Long-Horizon Tasks

One of my research plans is to develop approaches for han-
dling long-horizon robotic tasks, such as household chores [2].
A common strategy is to use high-level task planners [16, 32]
that decompose complex tasks into sequences of learned skills.
However, these planners often struggle with unstructured tasks,
as their rigid decompositions may fail to support adaptive
decision-making. As a complementary strategy, I plan to
explore compositional generalization for long-horizon tasks.
My goal is to develop methods that enable robots to efficiently
learn higher-level tasks by composing previously learned
skills, rather than requiring them to be trained from scratch.
To achieve this, I plan to investigate language-conditioned
policies for structured skill composition, allowing robots to
generalize to increasingly complex behaviors. This approach
will enhance adaptability by enabling robots to construct task
hierarchies dynamically in response to novel scenarios.

B. Lifelong Learning and Interaction for Robotics

While I have explored the learning and interaction capabil-
ities for language-driven robotics, these capabilities have been
addressed independently rather than being interwoven into a
cohesive framework. Inspired by humans who continuously
refine their understanding of the world through experience, my
plan is to develop lifelong learning systems for robotics that
seamlessly integrate interaction and learning. These models
should evolve their capabilities by circumventing catastrophic
forgetting when exposed to new data or tasks. I am excited
to study new paradigms for training lifelong learning models,
enabling them to expand their grounded knowledge over time.
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